

CML 82-5

NASA CR 168057

WAVE PROPAGATION IN GRAPHITE/EPOXY

LAMINATES DUE TO IMPACT

by

T.M. Tan and C.T. Sun

December, 1982

COMPOSITE | MATERIALS LABORATORY

DESTRUCTION STATEMENT A

Approved for public releases
Distribution Unlimited

THE REST OF DEFENSES
THE PROPERTY OF THE STATE OF THE STA

PURDUE UNIVERSITY

School of Aeronautics and Astronautics West Lafayette, Indiana 47907 CML 82-5

NASA CR 168057

WAVE PROPAGATION IN GRAPHITE/EPOXY

LAMINATES DUE TO IMPACT

by

T.M. Tan and C.T. Sun

December, 1982

19960318 002

DTIC QUALITY INSPECTED 1

1. Report No. NASA CR-168057	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle WAVE PROPAGATION IN GRAPHITE/EPOX	Y LAMINATES DUE TO IMPACT	5. Report Date December 1982
		6. Performing Organization Code
7. Author(s) T. M. Tan and C. T. Sun		8. Performing Organization Report No.
9. Performing Organization Name and Address		10. Work Unit No.
Purdue University School of Aeronautics and Astron	autics	11. Contract or Grant No.
West Lafayette, IN 47907	*	NSG 3185
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered Interim Report
National Aeronautics & Space Adm Washington, DC 20546	inistration	14. Sponsoring Agency Code
15. Supplementary Notes Project Monitor:	C. C. Chamis,Structures & Mo NASA Lewis Research Center, 21000 Brookpark Road Cleveland, OH 44135	l echanical Technologies Div. M.S. 49-6
16. Abstract		
experimentally. A 9-node isopar law was used for the theoretical used for the experimental invest gage experimental data. The col	ametric finite element in con investigation. Flat laminat igation. Theoretical results lective results of the invest	is investigated theoretically and junction with an empirical contact es subjected to pendulum impact were are in good agreement with strain igation indicate that the theoretical about 150 in/sec. impact velocity.
	•	
17. Key Words (Suggested by Author(s)) Impact fiber composites, laminat finite element, stress waves	es contact law, 18. Distribution S	Statement assified, Unlimited
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages 22. Price*
Unclassified	Unlimited	130

TABLE OF CONTENTS

Pa	age
TABLE OF CONTENTS	111
LIST OF TABLES	٧
LIST OF FIGURES	vi
LIST OF SYMBOLS	ix
CHAPTER 1 - INTRODUCTION	1
CHAPTER 2 - STRESS WAVE IN A LAMINATED PLATE	5
2.1 Laminate Theory with Transverse shear effects 2.1.1 Lamina Constitutive Equations	6 6 9
Equations	12 16
2.2 Propagation of Harmonic Waves	18
2.3 Propagation of Wave Front	23 25 27 32 35
CHAPTER 3 - STATICAL INDENTATION LAWS	48
3.1 Specimens and Experimental Procedure	52
3.2 Experimental Results	53 53 57 71

3.3 Discussion	71
CHAPTER 4 - IMPACT EXPERIMENTS	80
4.1 Experimental Procedure	81
4.2 Calibration of Impact-Force Transducer	84
4.3 Finite Element Analysis	75
44 Results and Discussion	100
CHAPTER 5 - SUMMARY AND CONCLUSION	113
LIST OF REFERENCES	116
APPENDIX: COMPUTER PROGRAM AND USER INSTRUCTIONS	119

LIST OF TABLES

Table	
	Page
3.1 Contact coefficient k of loading law F = $k\alpha^{15}$	60
4.1 Specifications for Model 200A05 Impact-Force	85

LIST OF FIGURES

Figure	Pa	age
	Lamina reference axes and laminate reference	8
2.2 L	Laminate displacement components for a cross-section perpendicular to the y-axis	10
2.3 S	Stress-resultants and geometry of a typical N-layer laminate	14
r	Dispersion curves for plane harmonic waves propagating in the 0°- 45°- and 90°- directions	22
ŗ	Frequency curves for flexural waves propagating in the 0°- 45°- and 90°- directions	24
	A deformed volume V divided by a travelling surface $\Omega.\ldots$	29
2.7	Normal velocities of in-plane wave fronts	36
2.8	Normal velocities of flexural wave fronts	37
2.9 \	Wave front positions at different times and rays for in-plane extensional mode	43
2.10 V	Wave front positions at different times and rays for in-plane shear mode	44
	Wave front positions at different times and rays for bending mode	45
2.12 \	Wave front positions at different times and rays for twisting mode	46
3.1 5	Schematical diagram for the indentation test set-up	54
3.2 L	Loading curve of [0°/45°/0°/-45°/0°] _{2s}	55

3.3	Loading curve of [90°/45°/90°/-45°/90°] ₂₅ specimens with 0.5 inch indenter (n=3/2)	56
3.4	Loading curve of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{28}$ specimens with 0.75 inch indenter (n=3/2)	58
3.5	Loading curve of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens with 0.75 inch indenter (n=3/2)	59
3.6	Relation between permanent indentation and maximum indentation	61
3.7	Unloading curves of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{28}$ specimens with 0.5 inch indenter $(q=2.2)$	63
3.8	Unloading curves of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens with 0.5 inch indenter $(q=2.2)$	64
3.9	Unloading curves of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{25}$ specimens with 0.75 inch indenter (q=1.8)	65
3.10	Unloading curves of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{28}$ specimens with 0.75 inch indenter (q=1.8)	66
3.11	Unloading curves of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{28}$ specimens with 0.5 inch indenter (q=2.5)	67
3.12	Unloading curves of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens with 0.5 inch indenter $(q=2.5)$	68
3.13	Unloading curves of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{25}$ specimens with 0.75 inch indenter (q=2.0)	69
3.14	Unloading curves of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens with 0.75 inch indenter $(q=2.0)$	70
3.15	Reloading curve of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ specimen with 0.5 inch indenter (p=1.5)	72
3.16	Reloading curve of [90°/45°/90°/-45°/90°] _{2s} specimen with 0.5 inch indenter (p=1.5)	73
3.17	Reloading curve of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{28}$ specimen with 0.75 inch indenter (p=1.5)	74
3.18	Reloading curve of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimen with 0.75 inch indenter (p=1.5)	75
3.19	Unloading rigidity s as function of maximum indentation	78
A 1	laminate dimension and strain dade locations	82

4.2	Graphical illustration of impact projectile	82
4.3	Schematical diagram for the impact experimental set-up	83
4.4	Experimental set-up for the calibration of impact-force transducer	86
4,5	Typical output voltages from transducer and accelerometer	88
4.6	Relation between V_{F} and V_{a}	88
4.7	Assumed exponential impulsive loading and the response history at the midpoint of the rod	90
4.8	Accelerations of rod for assumed exponential impulsive loading	92
4.9	Assumed sine-function impulsive loading and the response history at the midpoint of the rod	93
4.10	9-node isoparametric plate element	95
4.11	Finite element mesh for laminated plate and projectile	101
4.12	Strain response history at gage No.1	103
4.13	Strain response history at gage No.2	104
4.14	Strain response history at gage No.3	105
4.15	Strain response history at gage No.4	106
4.16	Strain response history at gage No.5	107
4.17	Strain response history at gage No.6	108
4.18	Transducer response and contact force histories from experimental and finite element results	109
4.19	Transducer response histories from experimental and finite element results up to 800 microseconds	111
4.:20	Deformed configurations of laminated plate after impact	112

LIST OF SYMBOLS

Α	Cross-sectional area of the projectile
A _{ij} , B _{ij} , D _{ij}	Laminate stiffnesses
Es	Young's modulus of the steel indenter
E ₁	Young's modulus of laminar in the fiber direction
E ₂	Young's modulus of laminar in the transverse direction
F	Contact force
F _m	Maximum contact force
G	Shear modulus
[K _p], [K _r]	Stiffness matrices
$[M_p]$, $[M_r]$	Mass matrices
М	Stress couples of laminate
N	Stress resultants of laminate
$\{P_p\}, \{P_r\}$	Assembled global load vectors
Q	Transverse shear force of laminate
Q _{iJ}	Reduced stiffnesses
Q _{ij}	Transformed reduced stiffnesses
Rs	Radius of steel indenter
Si	Shape functions of plate element
V _F	Output voltage of the force transducer
V _a	Output voltage of the accelerometer

a	Acceleration
c	Phase velocity
Ca	Sensitivity of the accelerometer
C _F	Sensitivity of the impact-force transducer
C _n	Normal velocity of wave front
f _i	Shape functions of rod element
[f]	Discontinuity of f across wave front surface
h	Laminate thickness
k	Wave number
k	Contact coefficient
k ₁	Reloading rigidity
$[k_p], [k_r]$	Element stiffness matrices
[m _p], [m _r]	Element mass matrices
n	Power index of loading law
n _i	Unit normal on the wave front
р	Power index of reloading law
p _i	Slowness vector
$\{p_p\}_e$, $\{p_r\}_e$	Element load vectors
q	Power index of unloading law
$\{q_{p}\}, \{q_{r}\}$	Assembled global displacement vectors
$\{q_p\}_e$, $\{q_r\}_e$	Element displacement vectors
s	Unloading rigidity
t	Time
t*	Non-dimensional time
u, v, w	Displacement components of laminate
u°, v°, w°	Midplane displacement components

x, y, z Laminate coordinate system

 x_1 , x_2 , x_3 Laminar coordinate system

 Ω Wave front surface

α Indentation depth

 α_0 Permanent indentation

 α_m Maximum indentation

 α_{cr}, α_{p} Critical indentations

γ Shearing strain

€ Normal strain

 κ_{x} , κ_{y} , κ_{xy} Rotation gradients

λ Wave length

ν Poisson's ratio

 ν_s Poisson's ratio of the steel indenter

 ξ , η Normalized local coordinates of plate element

ρ Mass density of laminate

σ Normal stress

τ Shearing stress ·

 ϕ_{x} , ϕ_{y} Rotations of cross-sections of laminate

ω Frequency

CHAPTER 1

INTRODUCTION

Advanced fiber-reinforced composite materials boron/epoxy and graphite/epoxy have been successfully employed as structural materials in aircrafts, missiles and space vehicles in recent years, and the performance of these composites has shown their superiority over metals applications requiring high strength, high stiffness as well as low weight. The advantages of these composites, however, are overshadowed by their relatively poor resistance to the loadings, which has prevented the application of impact these materials to turbine fan bladings. Many other reports dealing with the responses of advanced composites to various types of impact have further increased the need for a better understanding of the problem so that the survivability of these composites can be improved.

produces damage obvious that impact [t is strength of composite materials. consequently reduces the usually include local permanent The damage modes breakage of fibers, delaminations, deformations. While the cause of these damages are still unknown and not be simple in nature, in general, the impact of a soft object could give a longer contact duration, and the dynamic response of the whole structure is of importance. The hard object impact usually gives a short contact time and results in the initial transmisson of impact energy into a local region of the structure. This initial energy will propagate into the rest of the structure in the form of stress waves. Far field damage away from the impact area could result from the reflection of stress waves. It is generally agreed that the cause of the sudden failure must be examined from the point of transient wave propagation phenomena.

waves induced by dynamic loads in laminated Flexural composites are more complicated than those in homogeneous and isotropic plates due the anisotropic and to nonhomogeneous properties in the laminate. Moreover. because of the low transverse shear modulus in fiber the effect of transverse shear deformation composites, becomes significant and should be considered in the In Chapter 2, the formulation. laminate theory which includes transverse shear deformation effect the reviewed, and harmonic waves in a graphite/epoxy laminated place are studied. The propagation of wave front which, for after impact, bound the stressed region a given time surrounding the impact point, is also investigated.

A survey of wave propagation and impact in composite materials has been given by Moon [1]. Many analytical [2-5], numerical [6-7] and experimental [8-10] methods have been employed to study the transient impact problems. The

respone of a laminated plate can be analyzed using these methods provided the applied load history is prescribed. However if the dynamic load results from an impact of an object on the laminated plate, then the resulting contact force must be determined first. An accurate account of the contact behavior becomes the most important step in analyzing the impact response problems.

A classical contact law between two elastic spheres was derived by Hertz [11]. When letting the radius of one of spheres go to infinity, one obtains the contact law between an elastic sphere and an elastic half-space. authors have used the Hertzian contact law for the study of impact on metals and composites [12-13]. Recently, Yang and Sun [14] performed statical indentation tests on graphite/ epoxy composite laminates using spherical steel indenters of different sizes and found that the Hertzian law of contact not adequate. Ιn particular, they found that significant permanent indentations existed and that the unloading paths were very different from the loading path. Noting that energy dissipation takes place during the process of impact, Yang and Sun [14] suggested that this energy is responsible for the local damage of the target The unloading curves and permanent indentations materials. obtained from the statical indentation tests may provide a useful information in estimating the amount of damage due to impact since this energy is simply the area enclosed by the

loading-unloading curves. In this study, similar statical indentation tests were conducted and the results are presented in Chapter 3.

Wang [15] has performed a number of impact graphite/epoxy laminated beams and plates. It was shown that the strain responses calculated using finite element method and the statically determined contact laws from [14] agreed with the experimental measurements quite well. indicates that the statical indentation law is reasonably adequate in the dynamical impact analysis. Ιt was also the contact force should be measured suggested that experimentally to provide an additional basis for comparison finite element solution which could allow further evaluation the applicability of the contact laws Chapter 4 describes an impact experiment on analysis. impact-force graphite/epoxy laminated plate using an transducer with a spherical steel cap as the impactor. The contact force history and strain responses at various points the plate were measured by means of the transducer and surface strain gages, respectively, and were compared with predictions of finite element analysis using statically determined contact law.

Chapter 5 summarizes the results obtained in Chapter 2, 3 and 4.

CHAPTER 2

STRESS WAVE IN A LAMINATED PLATE

laminated plate theory which includes the effects of transverse shear deformation and rotatory inertia Norris and Stavsky [16] in a way developed by Yang, suggested by Mindlin [17] for homogeneous isotropic plates. It was shown that the frequency curves for the propagation of harmonic waves in an infinite two-layer isotropic plate in plane strain agreed with the predictions of the exact solution obtained from theory of elasticity very well. laminated plate theory was developed by Whitney and similar Pagano [18] and was employed in the study of static bending and vibration for antisymmetric angle-ply composite plates with particular layer properties. It was found that effect of shear deformation can be quite significant for composite plates with span-to-depth ratio as high as Good agreement was also observed in numerical results for plate bending as comparing with exact solutions elasticity. In this study, the laminate theory developed by Whitney and Pagano was used for its simplicity yet quite satisfactory in describing the harmonic wave propagation [19].

2.1 Laminate Theory with Transverse Shear Effects

2.1.1 Lamina Constitutive Equations

A laminated plate of constant thickness h consists of a number of thin laminas of unidirectionally fiber-reinforced composite perfectly bonded together. Each lamina, whose fiber may orient in any arbitrary direction, can be regarded as a homogeneous orthotropic solid. Consider a typical k-th lamina. A coordinate system (x_1, x_2, x_3) is chosen in such a way that the x_1-x_2 plane coincides with the midplane of lamina, and x_1 and x_2 axes are parallel and perpendicular to the fiber direction, respectively. If a state of plane stress parallel to the x_1-x_2 plane is assumed, then the inplane stress-strain relations are given by

The transverse shear stress-strain relations are given by

in which

$$Q_{11} = E_{1}/(1-\nu_{12}\nu_{21})$$

$$Q_{22} = E_{2}/(1-\nu_{12}\nu_{21})$$

$$Q_{12} = \nu_{12}E_{2}/(1-\nu_{12}\nu_{21}) = \nu_{21}E_{1}/(1-\nu_{12}\nu_{21})$$

$$Q_{66} = G_{12}$$

$$Q_{44} = G_{23}$$

$$Q_{55} = G_{13}$$
(2-3)

are the so-called reduced stiffnesses, where E, G and ν are Young's modulus, shear modulus and Poisson's ratio, respectively, and subscripts 1 and 2 denote the directions parallel to x_1 and x_2 axes, respectively.

The coordinate system for an arbitrarily oriented lamina does not, in general, coincide with the reference axes (x,y,z) of laminated plate (see Figure 2.1). Using the coordinate transformation laws for stress and strain, we obtain the stress-strain relations in laminate reference system as

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy} \\
\tau_{yz} \\
\tau_{xz}
\end{cases} =
\begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} & 0 & 0 \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} & 0 & 0 \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} & 0 & 0 \\
0 & 0 & 0 & \overline{Q}_{44} & \overline{Q}_{45} \\
0 & 0 & 0 & \overline{Q}_{45} & \overline{Q}_{55}
\end{bmatrix}
\begin{pmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy} \\
\gamma_{yz} \\
\gamma_{yz}
\end{pmatrix}$$
(2-4)

in which $\overline{\mathbb{Q}}_{i,j}$ are given by

$$\overline{Q}_{11} = Q_{11}m^4 + 2(Q_{12} + 2Q_{66})m^2n^2 + Q_{22}n^4$$

 (X_1, X_2, X_3) — Lamina Reference Axes

(X,Y,Z)—Laminate Reference Axes

Figure 2.1 Lamina reference axes and laminate reference

$$\overline{Q}_{22} = Q_{11}n^4 + 2(Q_{12} + 2Q_{66})m^2n^2 + Q_{22}m^4$$

$$\overline{Q}_{12} = (Q_{11} + Q_{22} - 4Q_{66})m^2n^2 + Q_{12}(m^4 + n^4)$$

$$\overline{Q}_{16} = (Q_{11} - Q_{12} - 2Q_{66})m^3n + (Q_{12} - Q_{22} + 2Q_{66})mn^3$$

$$\overline{Q}_{26} = (Q_{11} - Q_{12} - 2Q_{66})mn^3 + (Q_{12} - Q_{22} + 2Q_{66})m^3n$$

$$\overline{Q}_{66} = (Q_{11} + Q_{22} - 2Q_{12} - 2Q_{66})m^2n^2 + Q_{66}(m^4 + n^4)$$

$$\overline{Q}_{44} = Q_{44}m^2 + Q_{55}n^2$$

$$\overline{Q}_{45} = (Q_{44} - Q_{55})mn$$

$$\overline{Q}_{55} = Q_{44}n^2 + Q_{55}m^2$$

where

$$m = \cos\theta$$
 $n = \sin\theta$

and θ is the angle between x-axis and x_1 -axis measured from x to x_1 counterclockwise as shown in Figure 2.1.

2.1.2 Plate Strain-Displacement Relations

The displacement components of the laminated plate are assumed to be of the form [16]

$$u(x,y,z) = u^{0}(x,y) + z\phi_{x}(x,y)$$

$$v(x,y,z) = v^{0}(x,y) + z\phi_{y}(x,y)$$

$$w(x,y,z) = w^{0}(x,y) = w(x,y)$$
(2-6)

where u^0 , v^0 and w^0 are the midplane displacement components in the x-, y- and z-directions, respectively, and ϕ_x and ϕ_y are rotations of cross-sections perpendicular to x- and y-axis, respectively (see Figure 2.2). In Equation (2.6) we

Figure 2.2 Laminate displacement components for a crosssection perpendicular to the y-axis

have assumed that u and v vary linearly in the thickness direction, while w is constant through the thickness.

The strain components for a point in k-th lamina of the laminated plate with a distance z from the midplane can be computed as

$$\begin{aligned}
\varepsilon_{xx}^{k} &= \varepsilon_{x}^{0} + z\kappa_{x} \\
\varepsilon_{yy}^{k} &= \varepsilon_{y}^{0} + z\kappa_{y} \\
\gamma_{xy}^{k} &= \gamma_{xy}^{0} + z\kappa_{xy} \\
\gamma_{yz}^{k} &= \partial w/\partial y + \partial v/\partial z = \partial w/\partial y + \phi_{y} = \gamma_{yz}^{0} \\
\gamma_{xz}^{k} &= \partial w/\partial x + \partial u/\partial z = \partial w/\partial x + \phi_{x} = \gamma_{xz}^{0}
\end{aligned} \tag{2-7}$$

where

$$\gamma_{x}^{0} = \partial u^{0}/\partial x$$

$$\gamma_{y}^{0} = \partial v^{0}/\partial y$$

$$\gamma_{xy}^{0} = \partial u^{0}/\partial y + \partial v^{0}/\partial x$$
(2-8)

are the in-plane strain components of midplane, and

$$\kappa_{x} = \partial \phi_{x} / \partial x$$

$$\kappa_{y} = \partial \phi_{y} / \partial x$$

$$\kappa_{xy} = \partial \phi_{x} / \partial y + \partial \phi_{y} / \partial x$$
(2-9)

are the rotation gradients.

In Equation (2-7), since w, ϕ_x and ϕ_y are independent of z, it follows that the transverse shear strains are constant through the thickness of the plate.

Equation (2-7) can be written in concise matrix form as

$$\begin{cases}
\epsilon \\
\gamma
\end{cases} = \begin{cases}
\epsilon_{x} \\
\epsilon_{y} \\
\gamma_{xy}
\end{cases} = \begin{cases}
\epsilon_{x}^{0} \\
\epsilon_{y}^{0} \\
\gamma_{xy}^{0}
\end{cases} + z \begin{cases}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{xy}
\end{cases} = \begin{cases}
\epsilon_{x}^{0} \\
\epsilon_{y}^{0} \\
\gamma_{yz}^{0}
\end{cases} + z \begin{cases}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{xy}
\end{cases} = \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{xz}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\kappa_{xy}^{0}
\end{cases} = \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{yz}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{xz}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{xy}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{xy}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{yz}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{y}^{0}
\end{cases} + z \begin{cases}
\epsilon_{y}^{0} \\
\gamma_{y$$

Thus, the strain components at any point in the plate can be determined from the extensional strain components of the midplane, the rotation gradients of the plate and the distance z from the midplane.

2.1.3 Stress-Resultants and Laminate Constitutive Equations

Substitution of Equation (2-10) in Equation (2-4) gives the stress components for a point in the k-th lamina as:

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} =
\begin{bmatrix}
\overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{16} & 0 & 0 \\
\overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{26} & 0 & 0 \\
\overline{Q}_{16} & \overline{Q}_{26} & \overline{Q}_{66} & 0 & 0 \\
0 & 0 & 0 & \overline{Q}_{44} & \overline{Q}_{45} \\
\tau_{xz}
\end{cases} + z \begin{cases}
\kappa_{x} \\
\kappa_{y} \\
\kappa_{xy} \\
0 \\
0
\end{cases}$$
(2-11)

The stress-resultants acting on a laminate can be obtained by integration of the stresses in each lamina through the laminate thickness. Specifically, the in-plane

stress-resultants are given by

$$\begin{cases}
N_{x} \\
N_{y} \\
N_{xy}
\end{cases} = \int_{-h/2}^{h/2} \begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\gamma_{xy}
\end{cases} dz = \sum_{k=1}^{N} \int_{-h}^{h} \int_{k-1}^{h} \left\{ \sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy} \right\} dz \qquad (2-12)$$

the stress couples are given by

and the transverse shear forces are given by

$$\begin{cases} Q_{y} \\ Q_{z} \end{cases} = \int_{-h/2}^{h/2} \begin{cases} \tau_{yz} \\ \tau_{xz} \end{cases} dz = \sum_{k=1}^{N} \int_{-h/2}^{h} \left\{ \tau_{yz} \\ \tau_{xz} \right\} dz$$
 (2-14)

The sign convention for these stress-resultants along with the geometry of a typical N-layer laminated plate are shown in Figure 2.3.

Substituting Equation (2-11) into the right hand sides of the above three equations and performing the integrations, we obtain

(a) STRESS RESULTANTS OF A LAMINATE

(b) GEOMETRY OF AN N-LAYER LAMINATE

Figure 2.3 Stress-resultants and geometry of a typical N-layer laminate

where

$$(A_{ij}, B_{ij}, D_{ij}) = \int_{-h/2}^{h/2} \overline{Q}_{ij} (1, z, z^2) dz$$
 $i, j = 1, 2, 6$ (2-18)

and

$$A^*_{ij} = \int_{-h/2}^{h/2} \overline{Q}_{ij} dz \qquad i,j = 4,5$$
 (2-19)

Equations (2-15) through (2-17) are usually written symbolically as

$$\begin{cases}
N \\
M
\end{cases} = \begin{bmatrix}
A & B & O \\
B & D & O
\end{cases} \begin{cases}
\epsilon^{0} \\
\kappa
\end{cases} \tag{2-20}$$

which is the laminate constitutive equation with transverse shear effect included.

2.1.4 Plate Equations of Motion

The stress-equations of motion for the k-th lamina are given by

$$\sigma_{xx}, + \tau_{xy}, + \tau_{xz}, = \rho \ddot{u}$$

$$\tau_{xy}, + \sigma_{yy}, + \tau_{yz}, = \rho \ddot{v}$$

$$\tau_{xz}, + \tau_{yz}, + \sigma_{zz}, = \rho \ddot{w}$$

$$(2-21)$$

where ρ is the mass density. Integrating Equation (2-21) through the thickness of laminate and then substituting Equation (2-12), (2-14) and (2-6) in, we obtain

$$N_{x,x} + N_{xy,y} = P\ddot{u}^{0} + R\ddot{\phi}_{x}$$
 $N_{xy,x} + N_{y,y} = P\ddot{v}^{0} + R\ddot{\phi}_{y}$
 $Q_{x,x} + Q_{y,y} + q = P\ddot{w}$

(2-22)

where q is the normal traction on the plate. Multiplying the first two equations of Equation (2-21), integrating through the thickness of laminate and then substituting Equations (2-13), (2-14) and (2-5) in, we obtain

$$M_{x,x} + M_{xy,y} - Q_{x} = R\ddot{u}^{o} + I\ddot{\phi}_{x}$$

$$M_{xy,x} + M_{y,y} - Q_{y} = R\ddot{v}^{o} + I\ddot{\phi}_{y}$$
(2-23)

in which P, R and I are defined as

$$(P,R,I) = \int_{-h/2}^{h/2} \rho(1,z,z^2) dz \qquad (2-24)$$

Equations (2-22) and (2-23) are the plate equations of

motion. Substitution of Equation (2-20) and then the strain-displacement relations in these two equations yield the equations of motion in terms of midplane displacements and rotations of the plate.

A graphite/epoxy laminated plate provided by NASA Lewis Research Center was used throughout this study. This laminate is a $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ graphite/epoxy composite with 0.0053 inch ply thickness and the following ply properties [15]:

$$E_1 = 17.5 \times 10^6 \text{ psi.}$$
 $E_2 = 1.15 \times 10^6 \text{ psi.}$
 $G_{12} = G_{13} = G_{23} = 0.8 \times 10^6 \text{ psi.}$
 $v_{12} = 0.30$
 $\rho = 0.000148 \text{ lb-sec}^2/\text{in}^4$

For symmetrically laminated composite plate, $B_{ij}=0$ and R=0. In addition, by choosing the x-axis of the laminate reference system to coincide with the 0° fiber direction, we obtain $A_{16}=A_{26}=0$ and $D_{16}=D_{26}$. Further, in this study, we assume $G_{13}=G_{23}=G_{12}$, and consequently, $A^*_{45}=0$ and $A^*_{44}=A^*_{55}$. For this particular laminate, the displacement-equations of motion are given by

$$A_{11}\partial^{2}u^{0}/\partial x^{2} + A_{66}\partial^{2}u^{0}/\partial y^{2} + (A_{12} + A_{66})\partial^{2}v^{0}/\partial x\partial y = P\ddot{u}^{0}$$

$$(A_{12} + A_{66})\partial^{2}u^{0}/\partial x\partial y + A_{66}\partial^{2}v^{0}/\partial x^{2} + A_{22}\partial^{2}v^{0}/\partial y^{2} = P\ddot{v}^{0}$$

$$D_{11}\partial^{2}\phi_{x}/\partial x^{2} + 2D_{16}\partial^{2}\phi_{x}/\partial x\partial y + D_{66}\partial^{2}\phi_{x}/\partial y^{2}$$

$$+ D_{16}(\partial^{2}\phi_{y}/\partial x^{2} + \partial^{2}\phi_{y}/\partial y^{2}) + (D_{12} + D_{66})\partial^{2}\phi_{y}/\partial x\partial y$$

$$-A^{*}_{44}(\partial w/\partial x + \phi_{x}) = I\ddot{\phi}_{x}$$
(2-26)

$$\begin{split} \mathsf{D_{16}} (\partial^2 \phi_{\times} / \partial \mathsf{x}^2 \, + \, \partial \phi_{\times} / \partial \mathsf{y}^2) \, + \, & (\mathsf{D_{12}} \, + \, \mathsf{D_{66}}) \partial^2 \phi_{\times} / \partial \mathsf{x} \partial \mathsf{y} \\ \\ & + \, \mathsf{D_{66}} \partial^2 \phi_{\mathsf{y}} / \partial \mathsf{x}^2 \, + \, 2 \mathsf{D_{16}} \partial^2 \phi_{\mathsf{y}} / \partial \mathsf{x} \partial \mathsf{y} \, + \, \mathsf{D_{22}} \partial^2 \phi_{\mathsf{y}} / \partial \mathsf{y}^2 \\ \\ & - \mathsf{A}^*_{44} (\partial \mathsf{w} / \partial \mathsf{y} \, + \, \phi_{\mathsf{y}}) \, = \, \mathsf{I} \, \dot{\phi}_{\mathsf{y}} \end{split}$$

$$A*_{44}(\partial^2 w/\partial x^2 + \partial^2 w/\partial y^2 + \partial \phi_x/\partial x + \partial \phi_y/\partial y) + q = P\ddot{w}$$

In Equation (2-26), the first two equations govern the in-plane motion while the last three equations govern the flexural motion.

2.2 Propagation of Harmonic Waves

Consider a infinitely large laminated plate governed by the equations of motion (2-26). We assume plane harmonic waves in the form

$$u^{0} = U \exp[ik(\eta - ct)]$$

$$v^{0} = V \exp[ik(\eta - ct)]$$

$$w = W \exp[ik(\eta - ct)]$$

$$\phi_{x} = \Phi_{x} \exp[ik(\eta - ct)]$$

$$\phi_{y} = \Phi_{y} \exp[ik(\eta - ct)]$$

$$(2-27)$$

propagating over the plate, where U, V, W, $\Phi_{\rm x}$ and $\Phi_{\rm y}$ are constant amplitudes, k is the wave number, c is the phase

velocity and η is given by

$$\eta = x \cos \alpha + y \sin \alpha$$
(2-28)

in which α is the angle between the direction of wave propagation and x-axis.

Substitution of Equation (2-27) into Equation (2-26) with q = 0 yields a system of five homogeneous equations for the five constant amplitudes. In order to have a nontrivial solution, the determinant of the coefficient matrix is set equal to zero. Since the equations are uncoupled into two groups, the determinantal equation can be separated into two equations as

$$|a_{11}| = 0 ag{2-29}$$

for the in-plane extensional and in-plane shear waves, and

$$|b_{1,i}| = 0$$
 (2-30)

for the flexural waves. In Equations (2-29) and (2-30) the coefficients a_{ij} and b_{ij} are given by

$$a_{11} = A_{11}\cos^{2}\alpha + A_{66}\sin^{2}\alpha - Pc^{2}$$

$$a_{12} = a_{21} = (A_{12} + A_{66})\sin\alpha\cos\alpha \qquad (2-31)$$

$$a_{22} = A_{66}\cos^{2}\alpha + A_{22}\sin^{2}\alpha - Pc^{2}$$

and

$$b_{11} = D_{11}k^2\cos^2\alpha + 2D_{16}k^2\sin\alpha\cos\alpha + D_{66}k^2\sin^2\alpha + A^*_{44} - Ik^2c^2$$

$$b_{12} = b_{21} = D_{16}k^2\cos^2\alpha + (D_{12} + D_{66})k^2\sin\alpha\cos\alpha + D_{16}k^2\sin^2\alpha$$

$$b_{13} = b_{31} = iA^*_{44}k\cos\alpha$$
 (2-32)

$$b_{22} = D_{66}k^{2}\cos^{2}\alpha + 2D_{16}k^{2}\sin\alpha\cos\alpha + D_{22}k^{2}\sin^{2}\alpha + A^{*}_{44} - Ik^{2}c^{2}$$

$$b_{23} = b_{32} = iA^*_{44}ksin\alpha$$

$$b_{33} = -A^*_{44}k^2 + Pk^2c^2$$

Expanding Equation (2-29) we obtain a quadratic equation in c^2 as

$$c^4 - d_1c^2 + d_2 = 0 (2-33)$$

where

$$d_{1} = (A_{11}\cos^{2}\alpha + A_{22}\sin^{2}\alpha + A_{66})/P$$

$$d_{2} = \begin{vmatrix} A_{11}\cos^{2}\alpha + A_{66}\sin^{2}\alpha & (A_{12} + A_{66})\sin\alpha\cos\alpha \\ (A_{12} + A_{66})\sin\alpha\cos\alpha & A_{66}\cos^{2}\alpha + A_{22}\sin^{2}\alpha \end{vmatrix}$$
(2-34)

It is noted that the phase velocity c does not depend on the wave number k, thus these waves are nondispersive. In studying of transverse impact problem where in-plane deformation is negligible, this nondispersive property has no significant effect. Should in-plane deformation become important, higher order approximation of displacement

components u and v must be assumed and the dispersive property of these in-plane waves could be included.

From Equation (2-34) it is evident that there exist two phase velocities corresponding to two modes of wave. Although these two waves involve both in-plane extensional deformation as well as in-plane shear, from the eigenvectors we are able to tell which one is dominant. Thus we label the two waves as in-plane extensional wave and in-plane shear wave accordingly.

The determinantal equation given by Equation (2-30) yields three positive roots in c2 indicating that three flexural waves exist. These phase velocities are functions of the wave number k, thus they are dispersive. Among these modes of wave, only the lowest one corresponding to the transverse shear wave has a finite velocity as $k\rightarrow 0$ or as the wave length becomes infinite. The dispersion curves for the waves of the lowest mode propagating in the directions of 0°, 45° and 90° respectively are plotted in Figure 2.4 with the non-dimensional phase velocity vs. the nondimensional wavelength λ/h . It can be seen that they all approach the value of $\sqrt{G_{13}/p}$ as the wavelength becomes The phase velocities for the two higher modes, however, approach different values in different propagation For laminated composite which are directions when $\lambda \rightarrow 0$. anisotropic in general, the phase velocity varies from one direction to another. As a result the wave surface will

Figure 2.4 Dispersion curves for plane harmonic waves propagating in the 0°- 45°- and 90°- directions

become a rather complicated shape as it propagates. This will be discussed in the next section.

Substitution of ω = kc in Equation (2-32) yields a set of frequency equations for flexural waves. Figure 2.5 shows the frequency curves of these waves for $\alpha=0^{\circ}$, 45° and 90° , respectively, with the non-dimensional frequency vs. the non-dimensional wavelength. The cutoff frequencies for the two higher modes have a value of $\sqrt{12G_{13}/\rho}/h$. Comparing with the exact cutoff frequency $(\pi/h)\sqrt{G_{13}/\rho}$, it can be seen that if the shear correction factor $\pi^2/12$ is introduced, this theory will predict the correct cutoff frequency.

2.3 Propagation of Wave Front

Impact of foreign objects on a laminated plate with a very short duration could generate weak shock waves which into the rest of the structure with finite propagate velocities, and the positions of the wave fronts define being disturbed at any instant after Damages to the laminated plate may possibly occur first wave front hits the weakest part. It is hence important to investigate the propagation of these shocks There have been works dealing with the plate. propagation of wave front in anisotropic elastic media [20-Moon [23] presented an analysis of wave surfaces in a 221. laminate by treating it as an equivalent homogeneous

Figure 2.5 Frequency curves for flexural waves propagating in the 0°- $45^{\circ}-$ and $90^{\circ}-$ directions

orthotropic plate. The acceleration waves and their wave fronts were investigated. The propagation of shock waves in more general laminates which exhibit the bending-extensional coupling were studied by Sun [2]. The ray theory was employed to construct the wave front surface. The growth and decay of the shock strength were also discussed. In this section, the analytical procedures developed by Sun [2] were applied on a $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{25}$ graphite/epoxy laminated plate.

2.3.1. Kinematic Conditions of Compatibility on the Wave

A wave front, which will be denoted by Ω , is defined as a surface travelling over the plate as time varies continuously, and across which there may exist a discontinuity in the stress, particle velocity and their derivatives.

Consider a discontinuous surface Ω passing some observation point in a medium at a certain time t. Let fbe the value of a field function $f(x_i,t)$ (e.g. stress, particle velocity, etc.) behind the surface Ω , and f^+ be the value of f in front of it, then the discontinuity of function f can be expressed as

$$[f] = f^+ - f^-$$
 (2-35)

in which the right hand side is to be evaluated at the time and location on Ω passing the observation point, and the jump across the wave front is denoted by square bracket.

Surface $\,\Omega$ may be expressed mathematically by an equation of the form

$$\Psi(\mathbf{x}_1, \mathbf{t}) = 0 \tag{2-36}$$

or, by making t explicit, as

$$\Psi(x_i, t) = F(x_i) - t = 0$$
 (2-37)

which represents a family of surfaces in x_i -space with t as a parameter. By evaluating f^+ and f^- at $t=F(x_i)$, the jump of f across the wave front becomes

$$[f(x_i)] = f^+(x_i, F(x_i)) - f^-(x_i, F(x_i))$$
 (2-38)

The rate of change of [f] for an observer moving with $\boldsymbol{\Omega}$ is given by

$$d[f]/dt = (\partial f^{+}/\partial x_{i} - \partial f^{-}/\partial x_{i})dx_{i}/dt + (\partial f^{+}/\partial t - \partial f^{-}/\partial t)$$

$$= c_{i}[\partial f/\partial x_{i}] + [\partial f/\partial t]$$
(2-39)

where $t = F(x_i)$ is substituted, and $c_i = dx_i/dt$ are velocity components of wave front relative to the material.

If the laminate theory introduced in previous section is used, then the plate displacement components are u^0 , v^0 , w, ϕ_x and ϕ_y , while the spatial variables are $x_1 = x$ and $x_2 = y$. It is assumed that the integrity of the material is not

affected by the propagation of the stress wave front, then these displacement components will remain continuous. Consequently, we have

$$[u^0] = [v^0] = [w] = [\phi_x] = [\phi_y] = 0$$
 (2-40)

across the wave front. Applying the general condition of Equation (2-39) on u^0 , together with Equation (2-40), we obtain

$$[\partial u^{0}/\partial x_{j}]c_{j} + [\dot{u}^{0}] = 0$$
 $j = 1,2$ (2-41)

Let c_n and n_j be the normal velocity and the unit normal on the wave front, respectively, it follows that

$$n_j c_j = c_n (2-42)$$

and Equation (2-41) becomes

$$[\partial u^{0}/\partial x_{j}] = -[\dot{u}^{0}]n_{j}/c_{n}$$
 $j = 1,2$ (2-43)

Similar relations can be derived for the other displacement components v^0 , w, ϕ_x and ϕ_y . Together they specify the kinematic conditions of compatibility on the wave front.

2.3.2 Dynamical Conditions on the Wave Front

Consider a finite volume V of a material medium and denoted by S the boundary or surface of V. For a continuous and differentiable function $f(x_i,t)$ in V, it can be shown

[23] that

$$\frac{d}{dt}\int_{\mathbf{v}}f(\mathbf{x}_{i},t)dV = \int_{\mathbf{v}}f_{i}dV + \int_{s}GfdS \qquad (2-44)$$

under deformation of the medium, where G is the normal velocity of the surface S. In the case where the deformation of the volume V is determined solely by the motion of material particles, we have

$$G = \dot{u}_i n_i = \dot{u}_n \tag{2-45}$$

where u_i is the displacement components, n_i is the outward normal on S, and \dot{u}_n is the normal velocity of material particle on S. If there exists a discontinuity surface (or wave front) travelling with velocity c_i in the medium, by choosing this surface as the boundary of V, we have

$$G = c_i n_i = c_n \tag{2-46}$$

where c_n is the normal velocity of wave front.

Suppose that a volume V whose motion is determined by the deformation of the material medium, is divided by a travelling surface Ω into two volumes V- and V+ as shown in Figure 2.6. The surface S is also divided into two portions S- and S+ which form parts of the boundaries of V- and V+, respectively. The remaining part of the boundary is formed by Ω_0 which is a segment of Ω . In Figure 2.6, n_i denotes the unit normal of Ω in the direction of travelling, and n_i * denotes the unit outward normal of S.

Figure 2.6 A deformed volume V divided by a travelling surface $\boldsymbol{\Omega}$

Taking $f = \rho \dot{u}_1$ in Equation (2-44) and using equation (2-45) and (2-46), we obtain

$$\frac{d}{dt} \int_{\mathbf{v}} \rho \dot{u}_{i} dV = \int_{\mathbf{v}} (\rho \dot{u}_{i})_{t} dV + \int_{s} \dot{u}_{n} \rho \dot{u}_{i} dS + \int_{s_{0}} c_{n} \rho \dot{u}_{i} d\Omega \quad (2-47)$$

$$\frac{d}{dt}\int_{\mathbf{v}^{+}}\rho\dot{\mathbf{u}}_{i}^{\dagger}dV = \int_{\mathbf{v}^{+}}(\rho\dot{\mathbf{u}}_{i}^{\dagger})_{i}^{\dagger}dV + \int_{\mathbf{s}^{+}}\dot{\mathbf{u}}_{n}^{\dagger}\rho\dot{\mathbf{u}}_{i}^{\dagger}dS - \int_{\mathbf{n}_{0}}c_{n}\rho\dot{\mathbf{u}}_{i}^{\dagger}d\Omega \quad (2-48)$$

where \dot{u}_i^+ and \dot{u}_i^+ are the velocity components of material particle in V⁻ and V⁺, respectively. Combining the above two equations gives

$$\frac{d}{dt} \int_{\mathbf{v}} \rho \dot{\mathbf{u}}_{i} \, dV = \int_{\mathbf{v}} (\rho \dot{\mathbf{u}}_{i})_{,t} \, dV + \int_{\mathbf{s}^{-}} \dot{\mathbf{u}}_{n}^{-} \rho \dot{\mathbf{u}}_{i}^{\dagger} \, dS + \int_{\mathbf{s}^{+}} \dot{\mathbf{u}}_{n}^{+} \rho \dot{\mathbf{u}}_{i}^{\dagger} \, dS$$

$$+ \int_{\mathbf{s}_{0}} c_{n} \rho (\dot{\mathbf{u}}_{i}^{-} - \dot{\mathbf{u}}_{i}^{\dagger}) \, d\Omega \qquad (2-49)$$

From theory of elasticity we have

$$\frac{d}{dt} \int_{\mathbf{v}} \rho \dot{\mathbf{u}}_i \, dV = \int_{\mathbf{s}} \sigma_{ij} \mathbf{n}_j dS$$
 (2-50)

If we let the volume V approach zero at a fixed time in such a way that it will pass into Ω_0 , then the volume integral in Equation (2-49) will evidently approach zero; however

$$\int_{s+} \dot{u}_n^{\dagger} \rho \dot{u}_1^{\dagger} dS \rightarrow - \int_{so} \dot{u}_n^{\dagger} \rho \dot{u}_1^{\dagger} d\Omega \qquad (2-51)$$

$$\int_{S^{-}} \dot{u}_{n}^{-} \rho \dot{u}_{i}^{-} dS \rightarrow \int_{S^{0}} \dot{u}_{n}^{-} \rho \dot{u}_{i}^{-} d\Omega \qquad (2-52)$$

$$\int_{\mathbb{R}} \sigma_{ij} n_{j} dS \rightarrow \int_{\mathbb{R}} (\sigma_{ij}^{+} - \sigma_{ij}^{-}) n_{j} d\Omega \qquad (2-53)$$

where $\sigma_{i,j}^-$ and $\sigma_{i,j}^+$ are the stress components on the sides of Ω_0 , respectively.

Substituting Equations (2-50) through (2-53) into Equation (2-49) gives

$$\int_{\mathbb{R}^{n}} (\sigma_{iJ}^{+} - \sigma_{iJ}^{-}) n_{J} d\Omega = \int_{\mathbb{R}^{n}} \rho \dot{u}_{i}^{-} (c_{n} - \dot{u}_{n}^{-}) d\Omega - \int_{\mathbb{R}^{n}} \rho \dot{u}_{i}^{+} (c_{n} - \dot{u}_{n}^{+}) d\Omega$$
 (2-54)

Using $[\sigma_{ij}]$ and $[\dot{u}_i]$ to represent the jumps of stress and particle velocity across the wave front, and utilizing the fact that $c_n >> \dot{u}_n$, we obtain

$$\int_{\Omega_0} [\sigma_{ij}] n_j d\Omega = - \int_{\Omega_0} \rho c_n [\dot{u}_i] d\Omega$$
 (2-55)

Since this condition is independent of the extent of the surface integration Ω_0 , it follows that

$$[\sigma_{ij}]n_j = -\rho c_n[\dot{u}_i]$$
 (2-56)

In the case of laminated plate, i = x,y,z and j = x,y.

Substitution of Equation (2-6) into Equation (2-56) yields

$$[\sigma_{1j}]n_{j} = -\rho c_{n}\{[\dot{u}^{0}] + z[\dot{\phi}_{x}]\}$$

$$[\sigma_{2j}]n_{j} = -\rho c_{n}\{[\dot{v}^{0}] + z[\dot{\phi}_{y}]\}$$

$$[\sigma_{3j}]n_{j} = -\rho c_{n}[\dot{w}]$$
(2-57)

Integrating Equation (2-57) over the thickness of plate gives

$$[N_{x}]n_{x} + [N_{xy}]n_{y} = -Pc_{n}[\dot{u}^{0}] - Rc_{n}[\dot{\phi}_{x}]$$

$$[N_{xy}]n_{x} + [N_{y}]n_{y} = -Pc_{n}[\dot{v}^{0}] - Rc_{n}[\dot{\phi}_{y}]$$

$$[Q_{x}]n_{x} + [Q_{y}]n_{y} = -Pc_{n}[\dot{w}]$$
(2-58)

Multiplying the first two equations of Equation (2-57) by z and then integrating over the thickness, we obtain two more equations

$$[M_{x}]n_{x} + [M_{xy}]n_{y} = -Rc_{n}[\dot{u}^{0}] - Ic_{n}[\dot{\phi}_{x}]$$

$$[M_{xy}]n_{x} + [M_{y}]n_{y} = -Rc_{n}[\dot{v}^{0}] - Ic_{n}[\dot{\phi}_{y}]$$
(2-59)

where P, R and I have been defined in Equation (2-24)

The five equations given by Equations (2-58) and (2-59) are the dynamical conditions on the wave front for the laminated plate.

2.3.3 Propagation Velocity of the Wave Front

Across the wave front, the laminate constitutive relations given by Equation (2-20) can be written as

$$\begin{bmatrix}
[N] \\
[M]
\end{bmatrix} = \begin{bmatrix}
A & B & O \\
B & D & O \\
O & O & A^*
\end{bmatrix} \begin{bmatrix}
[\varepsilon] \\
[\kappa] \\
[\gamma]
\end{bmatrix} (2-60)$$

where

$$\{[N]\}^{T} = \{[N_{x}], [N_{y}], [N_{xy}]\}$$

$$\{[M]\}^{T} = \{[M_{x}], [M_{y}], [M_{xy}]\}$$

$$\{[Q]\}^{T} = \{[Q_{x}], [Q_{y}]\}$$
(2-61)

are the jumps of the stress resultants, and

$$\{ [\epsilon] \}^{\mathsf{T}} = \{ [\partial \mathsf{u}^{\mathsf{o}}/\partial \mathsf{x}], [\partial \mathsf{v}^{\mathsf{o}}/\partial \mathsf{y}], [\partial \mathsf{u}^{\mathsf{o}}/\partial \mathsf{y}] + [\partial \mathsf{v}^{\mathsf{o}}/\partial \mathsf{x}] \}$$

$$\{ [\kappa] \}^{\mathsf{T}} = \{ [\partial \phi_{\mathsf{x}}/\partial \mathsf{x}], [\partial \phi_{\mathsf{y}}/\partial \mathsf{y}], [\partial \phi_{\mathsf{x}}/\partial \mathsf{y}] + [\partial \phi_{\mathsf{x}}/\partial \mathsf{x}] \}$$

$$\{ [\gamma] \}^{\mathsf{T}} = \{ [\partial \mathsf{w}/\partial \mathsf{y}], [\partial \mathsf{w}/\partial \mathsf{x}] \}$$

are the jumps of the strain components. In Equation (2-62), the conditions $[\phi_x] = [\phi_y] = 0$ are substituted.

Substituting of Equation (2-43) and the similar relations for other kinematic variables in Equation (2-60), we can express the jumps of the stress resultants in terms of the jumps of the time derivatives of the displacement components u^0 , v^0 , w, ϕ_x and ϕ_y . These relations are then substituted in Equations (2-58) and (2-59), which results in five homogeneous equations. For $[0^0/45^0/0^0/-45^0/0^0]_{2s}$ graphite/epoxy laminated plate which is symmetrical and balanced (i.e. $B_{ij} = 0$, $A_{16} = A_{26} = 0$, R = 0 and $D_{16} = D_{26}$), these five equations are uncoupled into three groups as

$$[a_{ij}] \begin{cases} [\dot{u}^0] \\ [\dot{v}^0] \end{cases} = 0$$
 (2-63)

$$[b_{ij}] \left\{ \begin{bmatrix} \dot{\phi}_{x} \end{bmatrix} \right\} = 0 \tag{2-64}$$

$$(A^*_{44} - Pc_n^2)[\dot{w}] = 0 (2-65)$$

in which $[a_{i\,j}]$ and $[b_{i\,j}]$ are both two by two symmetric matrices, and their entries are given by

$$a_{11} = n_{x}^{2}A_{11} + n_{y}^{2}A_{66} - Pc_{n}^{2}$$

$$a_{12} = a_{21} = n_{x}n_{y}(A_{12} + A_{66})$$

$$a_{22} = n_{x}^{2}A_{66} + n_{y}^{2}A_{22} - Pc_{n}^{2}$$
(2-66)

$$b_{11} = n_x^2 D_{11} + 2n_x n_y D_{16} + n_y^2 D_{66} - Ic_n^2$$

$$b_{12} = b_{21} = D_{16} + n_x n_y (D_{12} + D_{66})$$

$$b_{22} = n_x^2 D_{66} + 2n_x n_y D_{16} + n_y^2 D_{22} - Ic_n^2$$
(2-67)

It can be seen that Equation (2-63) describes the inplane extensional and the in-plane shear wave fronts, Equation (2-64) describes the bending moment and the twisting moment wave fronts and Equation (2-65) describes the transverse shear wave front.

From Equation (2-65), we obtain the normal velocity with which the transverse shear wave front propagates as

$$c_n^2 = A^*_{44}/P$$
 (2-68)

It is noted that this velocity is independent of the direction of propagation, and is called directionally

isotropic wave front.

Equations (2-63) and (2-64) yield non-trivial solutions only if the determinant of the coefficients matrices vanish, i.e.

$$|a_{ij}| = 0 (2-69)$$

$$|b_{i,i}| = 0$$
 (2-70)

Each of the above equations can be expanded into a quadratic equation of c_n^2 . For $[0^0/45^0/0^0/-45^0/0^0]_{2s}$ graphite/epoxy laminated plate, the normal velocities of wave fronts corresponding to the in-plane modes and flexural modes are plotted in Figure 2.7 and 2.8, respectively. It is noted that the normal velocities of the in-plane extensional and in-plane shear modes are symmetrical about x-axis and y-axis, while there is no such symmetry for the bending moment and twisting moment modes.

2.3.4 Wave Surface and Ray

From Figure 2.7 and 2.8, it can be seen that for laminated composites which are anisotropic in general, the in-plane and flexural wave fronts travel with different normal velocities in different directions. In other words, the initial shape of a wave surface will be distorted after it propagates. However, Equations (2-66) and (2-67) show

Figure 2.7 Normal velocities of in-plane wave fronts

Figure 2.8 Normal velocities of flexural wave fronts

that for any fixed normal direction n_1 , c_n is a constant. Connecting the points having the same unit normals to the travelling wave front surface, we obtain a family of lines which are called rays. Thus, along a ray, the normal velocity of wave front remains unchanged. By using the ray theory which has been well established in the field of geometrical optics, we are able to construct the wave front surface.

Recall Equation (2.37)

$$F(x_i) - t = 0$$
 $i = 1,2$ (2-37)

which represents a family of wave fronts propagating over the plate with t as a parameter. It follows that

$$dF/dt = (\partial F/\partial x_i)(dx_i/dt) = (\partial F/\partial x_i)c_i = 1$$
 (2-71)

By putting

$$p_i = \partial F/\partial x_i = \nabla F \tag{2-72}$$

Equation (2-71) becomes

$$p_i c_i = 1$$
 (2-73)

Since p_i is normal to the surface F_i it can be written as

$$p_i = |p_i| n_i ag{2-74}$$

where $|p_i|$ denotes the length of p_i . Combining (2-73) and (2-74), we obtain

$$|p_i|n_ic_i = |p_i|c_n = 1$$
 (2-75)

from which we obtain

$$p_i = n_i/c_n \tag{2-76}$$

In Equation (2-76), p_i is called the slowness vector which has the direction normal to the wave front with the magnitude being equal to the inverse of normal velocity c_n .

Substituting Equation (2-76) in Equation (2-69) and (2-70), we obtain two equations in terms of p_i

$$\begin{vmatrix} p_x^2 A_{11} + p_y^2 A_{66} - P & p_x p_y (A_{12} + A_{66}) \\ p_x p_y (A_{12} + A_{66}) & p_x^2 A_{66} + p_y^2 A_{22} - P \end{vmatrix} = 0$$

$$\begin{vmatrix} p_{x}^{2}D_{11} + 2p_{x}p_{y}D_{16} + p_{y}^{2}D_{66} - I & D_{16} + p_{x}p_{y}(D_{12} + D_{66}) \\ D_{16} + p_{x}p_{y}(D_{12} + D_{66}) & p_{x}^{2}D_{66} + 2p_{x}p_{y}D_{16} + p_{y}^{2}D_{22} - I \end{vmatrix} = 0$$

which can be written in a general form as

$$g(p_i) = 0 \quad i = 1,2$$
 (2-77)

In view of Equation (2-72), we recognize that Equation (2-77) may be regarded as a set of first-order partial differential equation for F. A standard method of solving first-order partial differential equation is by means of characteristics [24], which reduces the equation to a system of first-order ordinary differential equations. In our case, Equation (2-77) then is equivalent to the following

$$dx/ds = \partial g/\partial p_x$$
 $dy/ds = \partial g/\partial p_y$ (2-78)

$$dp_x/ds = -\partial g/\partial x$$
 $dp_y/ds = -\partial g/\partial y$ (2-79)

where s is a parameter. These equations, together with Equation (2-77) describe the ray geometry and the normal direction of the wave front propagating along the ray.

From Equation (2-78), we have

$$dy/dx = (\partial g/\partial p_y)/(\partial g/\partial p_x)$$
 (2-80)

Since the normal direction of wave front along a ray is constant, it can be seen from Equation (2-76) that p_i is also constant along a ray. For laminated composite which is assumed to have homogeneous material properties, Equation (2-77) shows that $g(p_i)$ does not depend on x_i , consequently, $\partial g/\partial p_x$ and $\partial g/\partial p_y$ are all constants along a ray. Thus, the solution of Equation (2-80) is then given by

$$y = \zeta(x - x_0) + y_0$$
 (2-81)

where x_0 and y_0 are the initial values of x and y at t = 0, and $\zeta = (\partial g/\partial p_y)/(\partial g/\partial p_x)$. This equation shows that the rays in a homogeneous solid are straight lines.

From Equations (2-73) and (2-77), we have

$$c_i dp_i = 0 (2-82)$$

$$dg = (\partial g/\partial p_i) dp_i = 0 (2-83)$$

Eliminating dp; from these equations yields

$$dx_i/dt = c_i = (\partial g/\partial p_i)/(p_j \partial g/\partial p_j)$$
 (2-84)

where summation over j is understood.

Equation (2-84) can be solved to obtain the position of wave front at time t. Again, since $\partial g/\partial p_i$ and p_i are all constant along a ray, we obtain the solution of Equation (2-84) as

$$x = (\partial g/\partial p_x)t/(p_j\partial g/\partial p_j) + x_0$$
 (2-85)

$$y = (\partial g/\partial p_y)t/(p_j\partial g/\partial p_j) + y_0$$
 (2-86)

where x_0 and y_0 denote the initial wave position at t=0.

Consider at t = 0, a wave front forms a circle given by

$$x_0 = h \cos \alpha$$
 (2-87)
 $y_0 = h \sin \alpha$

At this instant, the normal directions to the wave front coincide with the radial directions. Due to the different velocities of propagation in directions, this initial shape would be distorted. By using Equations (2-85) and (2-86), the subsequent positions of the wave front can be determined. Figures 2.9-2.12 show the wave front positions at two consecutive instants after t = 0 for the in-plane extensional, in-plane shear, bending moment and twisting moment modes, respectively, for the $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{25}$

is noted that graphite/epoxy laminated plate. Ιt symmetrical laminates, the in-plane modes are uncoupled from The rays along which the the bending modes. the wave front are 0° , 45° and directions to respectively, are also shown in the figures. is Ιt that the wave fronts of the in-plane extensional and the inplane shear modes possess symmetry with respect to x-axis The wave fronts of the bending and twisting and y-axis. moments, however, lose their original symmetry with respect This is an indication that in and y-axis. to x-axis deformation of performing analysis of flexural laminate, one can not take a quadrant for analysis, a practice followed by many authors dealing with homogeneous and isotropic plates.

From Figures 2.9-2.12, it is also interesting to note that ray geometries for these two groups of wave fronts are quite different. For the in-plane extensional and in-plane shear wave fronts, the rays coincide with the normal directions when $\alpha=0^{\circ}$ and 90° . Along other directions, the direction of the ray deviates from the normal direction of the wave front. It was discussed in [2] that the degree of spreading of rays is proportional to the decay of the stress amplitude at the wave front. Thus, from Figures 2.9 and 2.11, one can conclude that the strength of the in-plane extensional and bending moment wave fronts decay more rapidly in the y-direction than in the x-direction.

Figure 2.9 Wave front positions at different times and rays for in-plane extensional mode

Figure 2.10 Wave front positions at different times and rays for in-plant shear mode

Figure 2.11 Wave front positions at different times and rays for bending mode

Figure 2.12 Wave front positions at different times and rays for twisting mode

A photoelastic study of anisotropic waves in a fiber reinforced composite has been done by Dally et al. [9]. The waves was produced by a explosive charge in a small hole on the plate. The result showed clearly an elliptic-like stress wave front pattern. This indicates that stress waves in anisotropic materials propagate with different velocities in different directions.

CHAPTER 3

STATICAL INDENTATION LAWS

A brief introduction of the historical development on impact problem involving homogeneous isotropic materials was given by Goldsmith [12]. Hertz [11] was the first to obtain a satisfactory solution on contact law for two isotropic elastic spherical bodies. When letting the radius of one of the spheres go to infinity, this law then describes the contact behavior between a sphere and an elastic half-space. The Hertzian law, in spite of being static and elastic in nature, has been widely applied to impact analyses where permanent deformations were produced. The use of this law beyond the elastic limit has been justified on the basis that it appears to predict accurately most of the impact parameters that can be experimentally verified.

In studying impact responses of laminated composites, the problem becomes extremely complicated. One may easily realize that the Hertzian contact law which was derived based on homogeneous isotropic materials may not be adequate in describing the contact behavior of laminated composites due to their anisotropic and nonhomogeneous properties. Moreover, most of the laminated composites have finite thickness which can not be represented by a half-space. In

many existing analytical works [25], loadings to the laminates were assumed known, and the responses of the laminates were assumed elastic.

Willis [26] obtained explicit formulas for Hertzian contact law for transversely isotropic half-space pressed by a rigid sphere, and extended it to the application of impact problems. It was shown that

$$F = k\alpha^{n} \tag{3-1}$$

with n=3/2 is valid for the contact force F and the indentation α , where k is a contact coefficient whose value depends on the material properties of the target and the sphere, and the radius of sphere.

A modified contact law with

$$k = (4/3) \frac{R_s^{1/2}}{\frac{1 - \nu_s^2}{E_s} + \frac{1}{E_t}}$$
 (3-2)

was used [13] in an analytical study on impact of laminated composites. In Equation (3-2), R_s , ν_s and E_s are the radius, Poisson's ratio and Young's modulus of the sphere, respectively, and E_t is the Young's modulus of the laminates in thickness direction. It was also suggested by Sun <u>et al</u>. [27] that the value of k can be experimentally determined.

and Sun [14] have conducted static Recently Yang indentation tests on the $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ graphite/ epoxy laminates using spherical steel indenters of 0.25 in. The results were fitted into diameters. and 0.5 in. Equation (3-1) and were found that the 3/2 power is valid. In addition, it was also observed that even for small permanent significant were there load amounts indentations. This implies that the unloading curve has to be different from the loading curves. In order to account for the permanent deformation, the equation

$$F = F_m \left(\frac{\alpha - \alpha_0}{\alpha_m - \alpha_0} \right)^q$$
 (3-3)

proposed by Crook [28] was used to model the unloading path where F_m is the contact force at which unloading begins, α_m is the indentation corresponding to F_m , and α_0 denotes the permanent indentation in an unloading cycle. Equation (3-3) can be rewritten as

$$F = s(\alpha - \alpha_0)^q \tag{3-4}$$

in which

$$s = F_m/(\alpha_m - \alpha_0)^q \tag{3-5}$$

is called unloading rigidity. In order to simplify the modeling of the unloading law, it was assumed [14] that the value of s for all the unloading curves remains the same.

Consequently, a constant α_{cr} given by

$$\alpha_{cr} = k/s \tag{3-6}$$

was introduced. It was also shown that q=5/2 fitted the unloading path very well, and the permanent indentation α_0 was then related to α_m by

$$\alpha_0/\alpha_m = 1 - (\alpha_{cr}/\alpha_m)^{2/5}$$
 as $\alpha_m > \alpha_{cr}$

$$\alpha_0 = 0$$
 as $\alpha_m \le \alpha_{cr}$ (3-7)

The value of α_{cr} was found to be independent of the size of the indenter and hence can be regarded as a material constant.

It was also mentioned in [14] and [29] that there were some practical difficulties in performing the tests. Since the indentation was measured step by step using a dial gage and readings on the gage were taken about 10 to 20 seconds after the load was increased by one step, the creep effect may cause an appreciable error to the results. Another important problem was that it was almost impossible to measure the permanent indentation accurately using the dial gage. In order to overcome these problems, a Linear Variable Differential Transformer (LVDT) was used in this study to measure the indentation.

The LVDT is an electromechanical transducer that produces an electrical output proportional to the displacement.

Connecting this output and the one from the strain indicator which is used to measure the applied loading to a X-Y plotter, one can obtain a continuous loading-unloading curve. By changing the loading rate which can be applied as fast as 50 lb./sec., it is possible to examine the significance of creep effect on the contact law. The starting point and final point of a loading-unloading cycle, which represent respectively the instants of contact and separation of the indenter and the specimen, can be easily determined from the curve. Thus, the measurements of permanent indentations are much more accurate than those using the dial gage.

3.1 Specimens and Experimental Procedure

Two groups of test specimens were prepared from a $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ graphite/epoxy laminate. They were cut in the way such that the longitudinal axis of the beam specimen of the first group was parallel to the 0° fiber direction while the second one was perpendicular to it. The latter then becomes $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ laminated beams. The thickness of the beam was 0.106 in. and the width was approximately 1.25 in.. In all tests, the specimens were clamped at both ends. It was shown in [14] that the span of the specimen in the range of 2 in. to 6 in. has little effect on the contact law. Hence, only one span, i.e. 2 in., was used in the test.

The experimental set-up is shown schematically in Figure 3.1. LVDT was mounted on a 'C' bracket fixed to the loading piston so that only the relative movement between the indenter and the specimen was recorded. The load was applied pneumaticallt by a plunger and it was measured using a load cell and a strain indicator. Outputs from LVDT and strain indicator were fed into an X-Y plotter so that a continuous force-indentation curve can be obtained. Two spherical steel indenters of diameters 0.5 in. and 0.75 in. were used.

3.2 Experimental Results

3.2.1 Loading Curves

The experimental curves were first digitized into some discrete data points and then fitted into Equation (3-1) Figures 3.2 and 3.3 show the using least-squares method. test data and the fitted curves for 0.5 in. diameter It can be seen from these figures that the 3/2 power index gives very good results. However, the contact coefficient k of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{28}$ specimen is less than the one of $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{2s}$ specimen by about 7 %. the test, larger deflections were observed for the During second group of specimen due to their lower flexural This means that the contact area is also larger rigidity. and the indentation under same amount of loading should be

Figure 3.1 Schematical diagram for the indentation test

Figure 3.2 Loading curve of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2,5}$ specimens with 0.5 inch indenter (n=3/2)

Figure 3.3 Loading curve of $\left[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}\right]_{2s}$ specimens with 0.5 inch indenter (n=3/2)

smaller comparing with the first group of specimens. Consequently, the higher value of k for the $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens is reasonable.

The results for 0.75 in. diameter indenter are presented in Figures 3.4 and 3.5. Again, good agreement between the experimental data and fitted curves indicates that the 3/2 power index for loading law is valid. The values of k for both indenters are summarized in Table 3.1. It should be noted that the average value of k obtained from the two groups of specimens was used later in a finite element analysis of impact responses.

3.2.2 Unloading Curves

By choosing a suitable value for q, it can be seen from Equation (3-5) that once the relation between α_0 and α_m is established, the unloading rigidity s is then determined. Test results show that the permanent indentations α_0 and the corresponding maximum indentations α_m exhibit a rather linear relationship. The equation given by

$$\alpha_0 = s_p (\alpha_m - \alpha_p) \tag{3-8}$$

is obtained from the test data for both 0.5 in. and 0.75 in. indenters using least-squares fitting method, and are plotted in Figure 3.6. In Equation (3-8), α_p can be considered as a critical value of indentation. Once the amount of indentation exceeds α_p , permanent deformation will occur.

Table 3.1 Contact coefficient k of loading law F = $k\alpha^{1.5}$

Size of Indenter(in)	0.5		0.75	
Specimen	Group 1+	Group 2‡	Group 1+	Group 2‡
k(lb/in ^{1,5})	1.284×10 ⁶	1.376×10 ⁶	1.833x10 ⁶	1.990x10 ⁶
Average k	1.330x10 ⁶		1.912x10 ⁶	
Ref.[14]	9.694×10 ⁵			

 $^{[0^{\}circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{25}$ specimens $[90^{\circ}/45^{\circ}/90^{\circ}/-45^{\circ}/90^{\circ}]_{25}$ specimens

Figure 3.6 Relation between permanent indentation and maximum indentation

Substitution of Equation (3-8) and (3-1) into Equation (3-5) yields

$$s = \frac{k\alpha_{m}^{3/2}}{[(1 - s_{p})\alpha_{m} + s_{p}\alpha_{p}]^{q}} \qquad \text{if } \alpha_{m} \ge \alpha_{p} \qquad (3-9)$$

$$s = \frac{k\alpha_m^{3/2}}{\alpha_m^{q}} \qquad if \alpha_m < \alpha_p \qquad (3-10)$$

These two equations along with Equation (3-4) are then used to fit the experimental unloading curves in finding the value of \mathfrak{q} .

Yang [14] has shown that q=2.5 fits the test results for both 0.25 in. and 0.5 in. indenters quite well. In this study, however, the values of 2.2 and 1.8 were found to give the best fitting for 0.5 in. and 0.75 in. indenters, respectively using the aforementioned method (Figures 3.7-3.10). For convenience, q=2.5 was used for 0.5 in. indenter while q=2.0 was chosen for 3/4 in. indenter. The results of the curve-fitting are presented in Figures 3.11-3.14. Further discussions on the unloading law will be given in Section 3.3.

Figure 3.7 Unloading curves of $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ specimens with 0.5 inch indenter (q=2.2)

Figure 3.11 Unloading curves of $[0^{\rm o}/45^{\rm o}/0^{\rm o}/-45^{\rm o}/0^{\rm o}]_{\rm 2\,s}$ specimens with 0.5 inch indenter (q=2.5)

3.2.3 Reloading Curves

The equation

$$F = k_1 (\alpha - \alpha_0)^p \qquad (3-11)$$

suggested by Yang [14] was used to model the reloading curve, where k_1 is called reloading rigidity and p=3/2 was found to fit the experimental data quite well. It was also observed that the reloading curve always returns to where the unloading began, and hence the reloading rigidity can be determined by

$$k_1 = F_m/(\alpha_m - \alpha_0)^{3/2}$$
 (3-12)

In other words, the reloading test is not necessary provided the unloading condition is specified. Some reloading curves obtained following Equations (3-11) and (3-12), and the experimental data are presented in Figures 3.15-3.18.

3.3 Discussion

As mentioned before, due to creep the loading rate may affect the contact law (i.e. the value of k). A series of tests with different loading rates was performed to examine this point. The maximum loading rate the test equipment can apply without exceeding it's capacity is about 50 lb/sec. It was found that in the range of 5 lb/sec. to 50 lb/sec., the values of k showed very little scatter, and the effect

due to local material nonhomogeneity in the composite may be even greater than the one due to the loading rate. However, an appreciable decrease of the value k was observed when the loading rate was lower than 1 lb/sec.. In some extreme cases where loadings were applied as slow as 10 lb/min., the average value of k for 0.5 in. indenter was very close to the one obtained previously by Yang [14] using dial gage to measure the 'indentation. In this study, the loading rates for all tests were approximately equal to 10 lb/sec..

Unlike the exponent n of the loading law for which 3/2 seems to yield good agreement with all value of experimental data, the exponent q of the unloading (Equation 3-3 or 3-4) reveals much wider deviation for different sizes of indenter. Value of q = 3/2 corresponding an elastic recovery according to the Hertzian theory was previously used by Crook [28] in a study of impacts between The experimental results from [14] bodies. metal present study show that the value of q varies from 1.5 2.5. Local plastic deformation, anisotropic properties of composite material and unloading rate are all possible this deviation. Obviously, an analytical study to determine the value of q as function of aforementioned impracticable. Since the purpose of this study factors is is to establish a contact law that can be used impact, the validity of this law must be analysis of verified from impact experiment. This will be investigated

in the next chapter.

From Equation (3-3) or (3-4), it can be seen that α_{0} plays an essential role in the unloading law and hence the value of it must be estimated accurately. Both of Equation (3-7) used by Yang [14] and Equation (3-8) used in this study for calculating α_0 were obtained experimentally, in which α_{cr} and α_{p} are considered to be material constants and were determined using α_0 and α_m from test data. However, it was pointed out in [14] that the values of α_0 might not be the true permanent indentations. They were the values which could make the power law given by Equation (3-4) fit the data under the unloading path. In fact, the load corresponding to the value of $\alpha_{cr} = 3.16 \times 10^{-3}$ in. obtained is about 200 lb. for 0.5 in. indenter, which is The value of $\alpha_p = 6.564 \times 10^{-4}$ in. apparently too high. obtained in this study, which corresponds to about 20 lb of loading, seems more reasonable as a critical value in relations between the For comparison, indentation. unloading rigidity s and maximum indentation α_{m} using Equation (3-7) with $\alpha_{cr} = 3.16 \times 10^{-3}$ in. and Equation (3-8) with $\alpha_p = 6.564 \times 10^{-4}$ in., respectively, are plotted in interesting to see that these two Ιt is Figure 3.19. equations give almost the same values of s up to $\alpha_m = 4 \times 10^{-3}$ which is approximately the maximum indentation before failure could occur to the specimen. The advantage of using Equation (3-7) for the formulation of the unloading law is

Figure 3.19 Unloading rigidity s as function of maximum indentation

that the value of s is constant for any α_m once the the indentation passes α_{cr} , and only one unloading test is necessary to determine α_{cr} provided the load is high enough to produce permanent indentations. The use of Equation (3-9) needs performing many tests to obtain a proper relation between α_0 and α_m according to Equation (3-8). However, it should be noted that Equation (3-7) is valid only if q = 5/2 is used in the unloading equation (3-4), while Equation (3-8) has no such restriction.

CHAPTER 4

IMPACT EXPERIMENTS

High velocity impacts usually result in very small contact time and the material under impact loadings may behave differently from static contact due to the strain The statically determined contact rate effect. presented in the previous chapter thus must be verified experimentally before it can be applied to the impact [15] has conducted many impact experiments Wang analysis. on laminated composite beams and plates using spherical balls as impacters. The strain response histories at various points on the specimens were recorded and compared with the finite element analysis with which the contact laws obtained by Yang [14] was incorporated. The results showed that the test data agreed with the predictions using the statical indentation laws quite well. In this chapter, an attempt was made to measure the contact force directly so that the applicability of statical contact laws in impact analysis can be further evaluated.

4.1 Experimental Procedure

A 6 in. by 4 in. laminated plate cut from a $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2S}$ graphite/epoxy panel was used as the impact target. The 0° -direction was arranged to parallel the long side of the plate. Seven strain gages (Micro Measurement Company TYPE EA-13-062 AQ 350) were placed at different locations as shown in Figure 4.1 to record the dynamic strain histories. One of the gages was placed on the surface directly opposite to the impact point to trigger the oscilloscope. This plate was hung with two strings at two corners to achieve the free boundary condition.

The projectile was made of an impact-force transducer with a spherical steel cap of 0.75 inch in diameter glued on the impact side and a steel rod of 5/8 inch in diameter glued on the other side as shown in Figure 4.2. It was then attached to a thin rod to form a pendulum which could produce impact velocities up to 150in/sec. The total mass of the projectile is 0.000181 lb-sec²/in.

The schematic diagram for this impact experimental set-up is shown in Figure 4.3. Signals from gages and transducer were amplified by a 3A9 Textronix amplifier and displayed on the screen of an oscilloscope.

Figure 4.1 Laminate dimension and strain gage locations

Figure 4.2 Graphical illustration of impact projectile

Figure 4.3 Schematical diagram for the impact experimental set-up

4.2 Calibration of Impact-Force Transducer

used was Modal 200A05 transducer The impact-force Some of it's Piezotronics Inc. marketed by PCB specifications are shown in Table 4.1 [30]. The structure of this transducer contains two thin quartz disks operating thickness compression mode and sandwiched between A built-in amplifier hardened steel cylindrical members. can reduce the high impedance of the voltage from the quartz element and provides an output voltage which can be read out on oscilloscope, recorder, etc.. The impact force is then computed using the equation,

$$F = V_F/c_F \tag{4-1}$$

where V_F is the output voltage and c_F is the sensitivity of the transducer. Since the value of c_F in Table 4.1 was obtained under quasi-static condition [30], it must be verified under impact condition first so that later the results from impact experiment can be correctly interpreted.

A circular cylindrical steel rod of 2 inch in diameter and 1.19 inch long hung on strings was used as the impact target to calibrate the transducer. The acceleration of the rod was measured by using a Model 302A accelerometer which was mounted on the end of the rod opposite to the impacted end as shown in Figure 4.4. The total weight of the target is 1.105 lb.

Table 4.1 Specifications for Model 200A05 Impact-Force Transducer

Range, Compression (5V output)	lb.	5,000
Maximum Compression	lb.	10,000
Resolution (200 μV p-p noise)	lb.	0.2
Stiffness	lb/μin	100
Sensitivity	mV/lb	1.0
Resonant Frequency (no load)	Hz	70,000
Rise Time	μsec	10
Discharge Time Constant (T.C.)	sec	2,000
Low-Frequency (-5%)	Hz	0.0003
Linearity,B.F.S.L.	%	1
Output Impedance	ohms	100
Excitation (thru C.C.diode)	VDC/mA	+18 to 24/2 to 20
Temperature Coefficient	%/°F	0.03
Temperature Range	٥F	-100 to +250
Shock (no load)	g	10,000

Figure 4.4 Experimental set-up for the calibration of impact-force transducer

Using Equation (4-1) and

$$a = V_a/c_a (4-2)$$

$$F = ma (4-3)$$

we obtain

$$c_F = (c_a/m)(V_F/V_a) \tag{4-4}$$

where V_a and c_a are the output voltage and the sensitivity of the accelerometer, respectively, a is acceleration of the target, and m is the mass of the target.

When impacting a metal projectile on a metal target with no pad on the impact surface, a high frequency ringing can be seen at the output of the transducer. In order to obtain smooth output curves, a soft pad was placed on the impact region of the target to eliminate the high frequency ringing. The cause of this ringing phenomenon will be discussed later. Typical output voltages of transducer and accelerometer read from the oscilloscope are shown in Figure 4.5. Values of V_F were plotted vs the corresponding values of V_a taken from these two curves at several discrete points in time and then fitted into a straight line as shown in Figure 4.6. The slope of this line represents the ratio of V_F/V_a which is then substituted in Equation (4-4) to calculate the sensitivity c_F .

Figure 4.5 Typical output voltages from transducer and accelerometer

Figure 4.6 Relation between V_{F} and V_{a}

Assuming the sensitivity of the accelerometer c_a is correct, and using Equation (4-4) and the test data, the average value of c_F calculated was 0.494 mV/lb.. A comparison with the value of 1.0 mV/lb from Table 4.1 shows that the test result has more than 50% error. However, since the quartz elements are located at the center of the projectile while the impact force is applied at the end, we were not certain that the force history picked up by the quartz elements did represent the real history of the impact force. The following simple analysis was performed to examine this uncertainty.

Consider a 1 in. long steel rod with free-free boundary conditions. For a impulse loading given by

$$F(t) = F_0 EXP[-(t-\tau)^2/4b^2]$$
 (4-5)

at one end, the force history at the midpoint of the rod, $F_m(t)$, was computed and plotted in Figure 4.7 together with the applied force history. It should be noted that the values of F_0 = 1000 lb., τ = 200x10⁻⁶ sec. and b = 40x10⁻⁶ sec. were chosen in Equation (4-5) so that the applied force history is similar to the experimental loading histroy. From Figure 4.7, it can be seen that $F_m(t)$ is only about half of the applied force F(t). The average ratio of $F_m(t)/F(t)$ was obtained to be 0.498, which is very close to the value of C_F obtained previously. The accelerations at the two ends and the midpoint of the rod were also

Figure 4.7 Assumed exponential impulsive loading and the response history at the midpoint of the rod

calculated and plotted in Figure 4.8. It shows that the magnitudes of acceleration at any position of the rod have virtually no difference. This indicates that the accelerometer did measure the real acceleration of the target while the impact-force transducer only picked up the force history at the point of it's own position. In other words, the wave motion in the projectile can not be neglected, hence it must be treated as an elastic body.

Repeating the previous analysis by changing the impulse loading of Equation (4-5) to

$$F(t) = F_0 \sin(\pi t/b) \tag{4-6}$$

and letting $F_0=1000$ lb. and $b=400 \times 10^{-6}$ sec., we obtain the force history at the midpoint of the rod as shown in Figure 4.9. Comparing Figure 4.9 with Figure 4.8, it is clear that the initial slope of the impulse forcing function would affect the amplitude of ringing. The steeper the initial slope is, the higher the amplitude of ringing will be. When impacting the steel projectile on graphite/epoxy surface, this ringing phenomenon was also observed.

Figure 4.8 Accelerations of rod for assumed exponential impulsive loading

Figure 4.9 Assumed sine-function impulsive loading and the response history at the midpoint of the rod

4.3 Finite Element Analysis

4.3.1 Plate Finite Element

A 9-node isoparametric plate finite element (see Figure 4.10) developed by Yang [31] based upon the laminate theory of Whitney and Pagano [18] was used to model the dynamic motion of the laminated plate. At each node there are five Among them, u^0 , v^0 and w are of freedom. degrees displacement components of mid-plane in the x-,y- and zdirection, respectively, and ϕ_{v} and ϕ_{v} are rotations of the cross-sections perpendicular to the xand symmetric laminates, the flexural respectively. For deformation is uncoupled from the in-plane extensional shear deformations, and hence, the degrees of freedom corresponding to u^{0} and v^{0} can be neglected in the transverse impact problem.

The isoparametric plate finite element is developed using the following shape functions:

For corner nodes:

$$S_{i} = (1/4)(1+\xi_{0})(1+\eta_{0})(\xi_{0}+\eta_{0}-1)+(1/4)(1-\xi^{2})(1-\eta^{2})$$
 (4-7)

For nodes at $\xi = 0$ and $\eta = \pm 1$:

$$S_1 = (1/2)(1 - \xi^2)(\eta_0 + \eta^2) \tag{4-8}$$

For nodes at $\xi = \pm 1$ and $\eta = 0$:

(b) DISTORTED ELEMENT

Figure 4.10 9-node isoparametric plate element

$$S_{i} = (1/2)(\xi_{0} + \xi^{2})(1 - \eta^{2}) \tag{4-9}$$

For the center node:

$$S_i = (1/2)(1-\xi^2)(1-\eta^2)$$
 (4-10)

In the above shape functions, ξ and η are normalized local coordinates, and

$$\xi_0 = \xi \xi_i, \quad \eta_0 = \eta \eta_i \tag{4-11}$$

where ξ_i and η_i are the natural coordinates of node i (Figure 4.10).

Using the shape functions, the plate displacements w, $\phi_{\rm x}$ and $\phi_{\rm v}$ are approximated by

$$\begin{cases} \mathbf{w} \\ \phi_{\mathbf{x}} \\ \phi_{\mathbf{y}} \end{cases} = \sum_{i=1}^{9} \left[\mathbf{S}_{i} \right] \left\{ \mathbf{q}_{\mathbf{p}} \right\}_{i} \tag{4-12}$$

where $\left\{q_{p}\right\}_{i}$ is the nodal displacement vector at node i and

$$3x3
[S]_{i} = S_{i}[I]$$
(4-13)

The stiffness and mass matrices are obtained by numerical integration using Gauss quadrature. Following standard finite element procedures, the system stiffness matrix $[K_p]$ and mass matrix $[M_p]$ are assembled from the element matrices. The equations of motion are expressed in matrix

form as

$$[M_p]\{\ddot{q}_p\} + [K_p]\{q_p\} = \{P_p\}$$
 (4-14)

where

$$\{P_{p}\}^{T} = \{0, \dots, F, \dots, 0\}$$
 (4-15)

is the force vector in which F is the contact force associated with the degree of freedom corresponding to the w-displacement at the impact point. The subscript p in Equations (4-12) through (4-15) denotes those are quantities corresponding to laminated plate.

4.3.2 Modeling of Projectile

In Section 4.2 we showed that in order to interpret the experimental transducer response, it is necessary to treat the projectile as an elastic body. A higher order rod finite element developed by Yang and Sun [32] was used to model the projectile. This element has two degrees of freedom at each node, namely the axial displacement u and it's first derivative $\partial u/\partial x$. It has been shown that this higher order element is far more superior than the elements with less degrees of freedom in the analysis of dynamic problems. The displacement function is taken as

$$u = a_1 + a_2 x + a_3 x^2 + a_4 x^3 (4-16)$$

where a_i are constant coefficients. Solving these coefficients in terms of the nodal degrees of freedom and substituting into Equation (4-16), we obtain

$$u = \{N\}^T \{q_r\}_e$$
 (4-17)

where

$$\{q_r\}_e^T = \{(u)_1, (\partial u/\partial x)_1, (u)_2, (\partial u/\partial x)_2\}$$
 (4-18)

is the vector of element nodal degrees of freedom, and

$$\{N\}^T = \{f_1(x), f_2(x), f_3(x), f_4(x)\}\$$
 (4-19)

in which

$$f_1(x) = (1 - x/L)^2 (1 + 2x/L)$$

$$f_2(x) = x(1 - x/L)^2$$

$$f_3(x) = x^2/L^2 (3 - 2x/L)$$

$$f_4(x) = x^2/L (x/L - 1)$$

are shape functions. The subscript r in Equation (4-17) denotes quantities corresponding to the rod.

Using variational principle, the equations of motion for one element are obtained as

$$[m_r] \{\ddot{q}_r\}_e + [k_r] \{q_r\}_e = \{p_r\}_e$$
 (4-20)

where $\{p_r\}_e$ is the vector of the generalized forces associated with the nodal degrees of freedom $\{q_r\}_e$, $[m_r]$ is the element mass matrix whose entries are given by

$$(m_r)_{i,j} = \rho A \int_0^L f_i f_j dx \quad i,j = 1,2,3,4$$
 (4-21)

and $\left[k_{r}\right]$ is the element stiffness matrix whose entries are given by

$$(k_r)_{ij} = EA \int_0^L f_i' f_j' dx \quad i,j = 1,2,3,4$$
 (4-22)

In Equations (4-21) and (4-22), ρ , E and A are mass density, Young's modulus and cross-sectional area of the projectile, respectively, and L is the length of the element. The explicit forms of $[k_r]$ and $[m_r]$ are given by

$$[k_r] = \frac{EA}{30L} \begin{bmatrix} 36 & 3L & -36 & 3L \\ 3L & 4L^2 & -3L & -L^2 \\ -36 & -3L & 36 & -3L \\ 3L & -L^2 & -3L & 4L^2 \end{bmatrix}$$
(4-23)

and

$$[m_r] = \frac{\rho AL}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^2 & 13L & -3L^2 \\ 54 & 13L & 156 & -22L \\ -13L & -3L^2 & -22L & 4L^2 \end{bmatrix}$$
(4-24)

Following the usual manner, the system stiffness and mass matrices are assembled from the element stiffness and mass matrices, and the system equations of motion are expressed as

$$[M_r]{\ddot{q}_r} + [K_r]{q_r} = {P_r}$$
 (4-25)

where

$$\{P_r\}^T = \{F, 0, \dots, 0\}$$
 (4-26)

in which F is the contact force applied at the impacting end of the projectile.

4.4. Results and Discussion

The 6 in. by 4 in. graphite/epoxy laminate was modeled by 140 (14 \times 10 mesh) plate elements while the projectile modeled by 20 rod elements (see Figure 4.11). The two sets of equations (4-14) and (4-25) along with the contact laws given by Equations (3-1), (3-3) and (3-11) were solved simultaneously. The finite difference method with $\Delta t = 0.2$ used to integrate the time variable. A coarser μsec. finite element mesh for plate was used and it was found that mesh yielded converged solutions. present the Dimensional analysis using 112 axisymmetric finite elements to model the projectile was also performed, and the results showed the the response at the midpoint of the projectile to no significant difference comparing with the one obtained by using rod elements.

An impact velocity of 115 in/sec was used in the experiment. Figures 4.12-4.17 show the strain response histories at the six locations picked up by the strain

Figure 4.11 Finite element mesh for lamianted plate and projectile

gages. The results obtained using the finite element methods and the contact laws are also shown in these figures. It is evident that the finite element solutions agree with the experimental data very well.

In Figure 4.18, the experimental transducer responses and the computed transducer responses using finite element are plotted against time as curve I and curve II, respectively. The computed contact force history is also plotted as curve III. It can be seen that the magnitudes of curve I and curve II agree fairly well. The frequencies of ringing for these two curves, however, are quite different. For the finite element results, the time interval between consecutive peaks of ringing is approximately equal to time that the longitudinal stress wave needed to travel the distance between two ends of the projectile. This indicates the ringing is simply caused by the transient wave travelling back and forth in the projectile.

peaks in 180 microseconds, and the time interval between two consecutive peaks is about 20 microseconds. It is noted that this transducer has a rise time of 10 microseconds (see Table 4.1), which is the time it needs to reach the maximum response. Any input signal with period smaller than twice of this value will be smoothed out by the transducer, and the output signal may appear to have lower frequency. In other words, the period of the output signal will be at

Figure 4.12 Strain response history at gage No.1

Figure 4.13 Strain response history at gage No.2

Figure 4.14 Strain response history at gage No.3

Figure 4.15 Strain response history at gage No.4

Figure 4.16 Strain response history at gage No.5

Figure 4.17 Strain response history at gage No.6

Figure 4.18 Transducer response and contact force histories from experimental and finite element results

least 20 microseconds. This might explain the lower frequency of ringing in the output voltage from the transducer.

The total duration of contact for this impact test is about 800 microseconds, and multiple contact is also from the test data. Figure 4.19 shows the observed computed the responses and transducer experimental transducer responses up to 800 microseconds. Although these two results do not matched very well after the end of the first contact, it is evident that the finite element analysis does predict the multiple contact phenomenon, and contact is also of duration calculated total approximately the same as the test result.

Figure 4.20 presents a number of deformed configurations of the laminated plate after impact. It is seen that at the point of impact, there is a strong discontinuity in slope of the transverse displacement indicating the presence of a significant transverse shear deformation.

Figure 4.19 Transducer response histories from experimental and finite element results up to 800 microseconds

Figure 4.20 Deformed configurations of laminated plate after impact

CHAPTER 5

SUMMARY AND CONCLUSION

The laminate theory developed by Whitney and Pagano was employed for studies of harmonic wave and propagation of wave front in a $[0^{\circ}/45^{\circ}/0^{\circ}/-45^{\circ}/0^{\circ}]_{2s}$ graphite/epoxy laminate. The dispersion properties of flexural waves were investigated. The wave front surface was constructed using ray theory. It was shown that due to the anisotropic properties of composite laminate, the transient wave would propagate with different velocities in different directions. The growth and decay of the wave front strength were also discussed.

The contact laws between 0.5 inch and 0.75 inch spherical and the graphite/epoxy laminate were indenters steel determined experimentally by means of a statical indentation unloading and reloading curves were fitted Loading, test. into power equations. Linear relation was found between the and the maximum indentation indentation permanent unloading, which is seen to be independent of the size This relation was then used to determine the coefficient of the unloading law. It was demonstrated that there was no need to perform reloading experiments once the loading and unloading laws were established. Test results showed loading and reloading curves followed the power laws with power indices of 1.5 very well, while the power indices for unloading curves varied from 1.5 to 2.5.

The statically determined contact laws were incorporated into an existing 9-node isoparametric plate finite element program to study the dynamic response of a graphite/epoxy laminated plate subjected to impact of a hard object. An impact experiment was conducted to verify the validity of statical contact laws in the dynamical impact analysis. It was shown that the strain responses predicted using the finite element method agreed with the test results very well. The contact force history of the impact test was measured by an impact-force transducer, which was also seen to match the finite element result in magnitude as well as contact duration.

been used ever since The indentation tests have beginning of the century to determine the static and dynamic hardnesses of metals in terms of the applied loading, size of the indenter, and the chordal diameter of the systematic similar [33]. If indentation permanent indentation tests are performed on the laminated composite materials, then the relations between contact coefficients the sizes of the indenters could be determined more rigorously, and the usefulness of the contact laws could be further extended.

the verification of the contact laws has been limited to low velocity impacts in this study, their accuracy under high velocity impact conditions is not clear. Besides the contact behavior which may be significantly different from static one, the damage induced by waves could be quite the extensive which needs to be included in the analysis. While present study tried to establish experimentally contact laws which can be used in the analysis of low velocity impact, the damage of laminate due to impact loading has not been discussed. It is apparent that more work needs so that the failure mechanism in laminated composites due to impact can be better understood. Stress waves propagating in thickness direction, which may be responsible for the delamination of laminates, is one of the important subjects that should be investigated. Strength and fatigue life degradations of laminates after impact, which have been examined briefly by Wang [15], also need more extensive study.

LIST OF REFERENCES

- [1] Moon, F.C., "A Critical Survey of Wave Propagation and Impact in Composite Material", NASA CR-121226, 1973.
- [2] Sun, C.T., "Propagation of Shock Waves in Anisotropic Composite Plates", <u>Journal of Composite Materials</u>, Vol.7, 1973, pp.366-382.
- [3] Moon, F.C., "Wave Surfaces Due to Impact on Anisotropic Plates", <u>Journal of Composite Materials</u>, Vol.6, 1972, pp.62-79.
- [4] Chow, T.S., "On the Propagation of Flexural Waves in an Orthotropic Laminated Plate and Its Response to an Impulsive Load", <u>Journal of Composite Materials</u>, Vol.5, 1971, pp.306-319.
- [5] Greszczuk, L.B., "Response of Isotropic and Composite to Particle Impact", Foreign Object Impact Damage to Composite, ASTM STP 568, American Society for Testing and Materials, 1975, pp.183-211.
- [6] Sun, C.T. and Huang, S.N., "Transverse Impact Problems by Higher Order Beam Finite Element", Computers & Structures, Vol.5, 1975, pp.297-303.
- [7] Kim, B.S. and Moon, F.C., "Impact Induced Stress Waves in an Anisotropic Plate", <u>AIAA Journal</u>, Vol.17, No.10, 1979, pp.1126-1133.
- [8] Daniel, I.M., Liber, T. and LaBedz, R.H., "Wave Propagation in Transversely Impacted Composite Laminates", Experimental Mechanics, January 1979, pp.9-16.
- [9] Dally, J.W., Link, J.A. and Prabhakaran, R., "A Photoelastic Study of Stress Waves in Fiber Reinforced Composites", Developments in Mechanics, Vol.6, Proceedings of the 12th Midwestern Mechanics Conference, 1971, pp.937-949.

- [10] Takeda, N. Sierakowski, R.L. and Malvern, L.E., "Wave Propagation Experiments On Ballistically Impacted Composite Laminates", Journal of Composite Materials, Vol.15, 1981, pp.157-174.
- [11] Hertz, H., "Uber die Beruhrung fester elastischer Korper", Journal Reine Angle Math, (Crelle), Vol.92, 1881, p.155.
- [12] Goldsmith, W., Impact, Edward Arnold, London, 1960.
- [13] Sun, C.T., "An Analytical Method for Evaluation of Impact Damage Energy of Laminated Composites", ASTM STP 617, American Society for Testing and Materials, 1977, pp.427-440.
- [14] Yang, S.H. and Sun, C.T., "Indentation Law for Composite Laminates", NASA CR-165460, July 1981, also to appear in ASTM STP series, American Society for Testing and Materials.
- [15] Wang, T., "Dynamic Response and Damage of Hard Object Impact on a Graphite/Epoxy Laminate", Ph.D. Dissertation, Purdue University, 1982.
- [16] Yang, P.C., Norris, C.H. and Stavsky, Y., "Elastic Wave Propagation in Heterogeneous Plates", International Journal of Solids and Structures, Vol.2, 1966, pp.665-683.
- [17] Mindlin, R.D., "Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, Elastic Plates", <u>Journal of Applied Mechanics</u>, Vol.18, 1951, pp.31-38.
- [18] Whitney, J.M. and Pagano, N.J., "Shear Deformation in Heterogeneous Anisotropic Plates", <u>Journal of Applied Mechanics</u>, Vol.37, 1970, pp.1031-1036.
- [19] Sun, C.T. and Whitney, J.M., "On Theories for the Dynamic Response of Laminated Plates", Proceedings AIAA/ASME/SAE 13th Structures, Structural Dynamics, and Materials Conference, 1972, AIAA Paper No.72-398.
- [20] Kraut, E., "Advances in the Theory of Anisotropic Elastic Wave Propagation", Review of Geophysics, Vol.1, No.3, 1963, pp.401-448.
- [21] Keller, H.B., "Propagation of Stress Discontinuities in Inhomogeneous Elastic Media", SIAM Review, Vol.6, No.4, 1964, pp.356-382.

- [22] Vlaar, N.J., "Ray Theory for an Anisotropic Inhomogeneous Elastic Medium", Bulletin of the Seismological Society of America, Vol.58, No.6, 1968, pp.2053-2072.
- [23] Thomas, T.Y., Plastic Flow and Fracture in Solids, Academic Press, 1961, p.10.
- [24] Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol.II, Interscience Publishers, 1962.
- [25] Foreign Object Impact Damage to Composite, ASTM STP 568, American Society for Testing and Materials, 1973.
- [26] Willis, J.R., "Hertzian Contact of Anisotropic Bodies", <u>Journal of Mechanics and Physics of Solids</u>, Vol.14, 1966, pp.163-176.
- [27] Sun, C.T. and Chattopadhyay, S., "Dynamic Response of Anisotropic Laminated Plates Under Initial Stress to Impact of a Mass", <u>Journal of Applied Mechanics</u>, Vol.42, 1975, pp.693-698.
- [28] Crook, A.W., "A Study of Some Impacts Between Metal Bodies by a Piezoelectric Method", <u>Proceedings of Royal Society</u>, London, A 212, 1952, p.377.
- [29] Sun, C.T., Sankar, B.V. and Tan, T.M., "Dynamic Response of SMC to Impact of a Steel Ball", Advances in Aerospace Structures and Materials, The Winter Annual Meeting of the American Society of Mechanical Engineers, Washington, D.C., 1981.
- [30] Operating Instructions, Model No. 200A05 Transducer, PCB Piezotronics, INC.
- [31] Yang, S.H., "Static and Dynamic Contact Behavior of Composite Laminates", Ph.D. Dissertation, Purdue University, 1981.
- [32] Yang, T.Y. and Sun, C.T., "Finite Elements for the Vibration of Framed Shear Walls", Journal of Sound and Vibration, Vol.27, No.3, 1973, pp.297-311.
- [33] Tabor, D., <u>The Hardness of Metal</u>, Oxford University Press, 1951.
- [34] Zienkiewicz, O.C., The Finite Element Method, 3rd edition, McGraw-Hill, 1977, Chapter 24, pp.677-757

APPENDIX

COMPUTER PROGRAM AND USER INSTRUCTIONS

The computer program used in this research was written following the program by Professor R. L. Taylor [34] with some necessary modification in order to solve the impact problems of laminated plates. A brief instruction of the input data for solving the impact problem specified in Chapter 4 of this report is given in this apppendix. The detailed descriptions of data input as well as the macro instructions for solving various types of problems can be found in [34]. The listing of input is shown at the end of this appendix, followed by the listing of program.

- I. Title and control information:
 - 1. Title card-Format(20A4)

Columns Description

- 1-4 Must contain FECM
- 5-80 Alphanumeric information to be printed with output as page header.
- 2. Control information card-Format(615)

Columns Description

- 1-5 Number of nodes (NUMNP)
- 6-10 Number of elements (NUMEL)

11-15 Number of layers (LAYER)

16-20 Spatial dimension (NDM)

21-25 Number of unknowns per node (NDF)

26-30 Number of nodes per element (NEN)

II. Mesh and initial information:

The input of each segment in this part of data is controlled by the alphanumeric value of macros, which must be followed immediately by the appropriate data. Except for the END card which must be the last card of this part, the data segemnts can be in any order. Each segment is terminated with blank card(s). The meaning of each macro is given by the following:

Macro Data to be input

COOR Coordinate data

ELEM Element data

BOUN Boundary condition data

MATE Material data

ROD Initial condition of the projectile

EXPE Experimental indentation laws data

END Must be the last card of this part, terminates mesh and initial information input.

1. Coordinate data-Format(215,2F10.0)

Columns Description

1-5 Nodal number

6-10 Generation increment

- 11-20 X-coordinate
- 21-30 Y-coordinate
- 2. Element data-Format(11I5)

Columns Description

- 1-5 Element number
- 6-10 Node 1 number
- 11-15 Node 2 number
- etc.
- 46-50 Node 9 number
- 51-55 Generation increment
- 3. Boundary condition data-Format(715)

Columns Description

- 1-5 Node number
- 6-10 Generation increment
- 11-15 DOF 1 boundary code
- 16-20 DOF 2 boundary code
- 21-25 DOF 3 boundary code
- 26-30 DOF 4 boundary code
- 31-35 DOF 5 boundary code
- 4. Initial condition of the projectile-Format(215,F10.0)

Columns Description

- 1-5 The node at which the projectile hits
- 6-10 DOF corresponding to the direction of impact
- 11-20 Initial impact velocity

5. Experimental indentation laws data-Format(4F10.0)

Columns Description

- 1-10 Contact coefficient k
- 11-20 Critical indentation α_p
- 21-30 Constant s_p of Equation 3-9
- 31-40 Power index q of the unloading law
- 6. Material data

Card 1-format(315,F10.0)

Columns Description

- 1-5 Order of Gauss quadrature for the numerical integration of the bending energy
- 6-10 Order of Gauss quadrature for the numerical integration of the transverse shear energy
- 11-15 Order of Gauss quadrature for strain outputs

 at Gauss points if >0

 at nodal points if <0
- 16-25 Total thickness of the laminate

Card 2-Format(7F10.0)

Columns Description

- 1-10 Mass density
- 11-20 Poisson's ratio V₁₂
- 21-30 Longitudinal Young's modulus E_1
- 31-40 Transverse Young's modulus E_2
- 41-50 Shear modulus G₁₂
- 11-20 Shear modulus G_{13}
- 11-20 Shear modulus G_{23}

Card 3,4, · · · Format(I5,F5.0,F10.0)

Columns	Description					
1-5	Layer number					
6-10	Fiber angle					
11-20	Thickness of the layer					

III. Macro instructions:

The first instruction must be a card with MACR in columns 1 to 4. The macro instructions needed to solve the problem specified in Chepter 4 of this report are shown in the listing of input. Cards must be input in the precise order. The following is the explanation of each macro:

Columns 1-4	Columns 5-10	Columns 11-15	Description
LMAS			Lumped mass formulation
DT		V	Set time increment to value V
LOOP		N	Execute N times the instructions
			between this macro and macro NEXT
TIME			Advance time by DT value
RODP		N	Integration of the equations of
			motion using the finite difference
			method. Contact force, indentation
			and element strain will be stored
			stored every N steps in loop
DISP		N	Nodal displacements will be stored
			every N steps in loop
NEXT			End of loop instructions

IV. Termination of program execution

A card with STOP in columns 1 to 4 must be supplied at the end of the input data in order to properly terminate the execution.

The values of contact force, indentation, element strain, nodal displacement and the response of the projectile at each requested output time step are stored in program files which can be saved (say, copy to a magnetic tape) at the end of execution. Three program files, i.e.; tape3, tape8 and tape9 are used for data saving:

Tape3: Nodal displacement - Format(6E12.4)

Nodal displacements, from node 1 to node NUMNP, are saved on tape3 at each requested output time step according to the format.

Tape8: Element strain - Format(216,5E12.4)

Element strains, from element 1 to element NUMEL, and then from node 1 to node NEN of each element, are saved on on tape8 at each requested output time step.

Columns Data saved

- 1-6 Element number
- 7-12 Node number of element
- 13-24 Bending strain κ_{x}
- 25-36 Bending strain $\kappa_{\rm y}$

- 37-48 Bending strain κ_{xy}
- 49-60 Transverse shearing strain Yyz
- 49-60 Transverse shearing strain √xz

Tape9: Contact force, indentation and the response of the
 projectile - Format(6E12.4)

The following information is saved on tape9 at each requested output time step:

Columns Data saved 1-12 Contact force 13-24 Indentation 25-36 'Transducer' response (see Chapter 4) 37-48 Displacement of the projectile at the impacted end 37-48 Velocity of the projectile at the impacted end 37-48 Acceleration of the projectile at the impacted end

LISTING OF INPUT DATA

609	*LOW 140	VELOC	TY IMP 2	ACT 5	OF L	AMINATE	D	PLATE**
COOR 17390628951784067395642844551778406739566283395555555568889111239562845517840673956628999931906288951778440673956444444444444444444444444444444444444			0.5500550055005500550055005500550055005		$\begin{array}{c} 0000\\ 00000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000\\ 0000$			

```
2.9375
                  4.5
 458
                          2.9375
                  6.0
 464
         0
                          3.1250
                   0.0
 465
         1
                  1.5
                          3.1250
 471
                           3.1250
                   4.5
 487
         1
                          3.1250
                   6.0
         0
 493
                           3.3125
                   0.0
 494
         1
                          3.3125
3.3125
 500
                   1.5
 516
         1
                   4.5
                           3.3125
                   6.0
 522
         0
                           3.5000
  523
         1
                   0.0
                  1.5
                           3.5000
3.5000
  529
          1
  545
          0
                   6.0
                           3.5000
  551
                           3.7500
                   0.0
  552
                   1.5
4.5
                           3.7500
  558
          1
                           3.7500
          1
  574
                           3.7500
  580
          0
                   6.0
                   0.0
                           4.0000
          1
  581
                           4.0000
                   1.5
  587
                           4.0000
  603
          1
                   4.5
                   6.0
                           4.0000
  609
ELEM
                                                       31
                                                             មានមានមានមាន
                          59
                                 2
                                      32
                                           60
                                                 30
                   61
               3
       59
117
175
233
                         117
175
233
                                      90
                                                 88
                                                       89
                               60
                                          118
              61
   15
                   119
                                                146
                                                      147
             119
                   177
                              118
                                    148
                                          176
   29
                               176
                                    206
                                          234
                                                204
                                                      205
                   235
   43
             177
                                                565
                                                      563
             235
                                          592
   57
                   293
                         291
                               234
                                    264
                                                320
                                                      321
                               292
                                     355
                                          350
                         349
        291
                   351
   71
             293
                                                378
                                                      379
                                          408
             351
                   409
                         407
                               350
                                     380
        349
   85
                         465
523
                                                436
                                                      437
                               408
                                     438
                                          466
   99
        407
             409
                   467
                                          524
                                                494
                                                      495
             467
525
                                     496
        465
                               466
                   525
  113
                                                      553
                                          582
                                                552
                   583
                         581
                               524
                                     554
        523
  127
BOUN
              -1
1
                                 0
                                       0
                           0
          1
                    -1
    1
                                       0
  609
          0
ROD
  305
          3
              115.0
  1912000. 0.0006564
                             0.094
MATE
3
        3
              -3 .105
0.3 17500000. 1150000.
                                                                         800000.
                                                             800000.
                                                 800000.
   0.000148
               0.0053
        0.
     2
        45.
                0.0053
        0.
                0.0053
     3
                0.0053
      -45.
    5
        0.
                0.0053
                0.0053
     6
         0.
        45.
                0.0053
                0.0053
        0.
     8
                0.0053
     9 -45.
        0.
                0.0053
    10
         0.
                0.0053
    11
       -45.
                0.0053
    12
                0.0053
        0.
    13
                0.0053
    14
        45.
                0.0053
        0.
    15
    16
         0.
                0.0053
        -45.
                0.0053
    17
                0.0053
         0.
                 0.0053
    19
        45.
                 0.0053
    50
         0.
END
```

MACR	
LMAS	
DT	•2E-6
LOOP	10
TIME	
RODP	5
DISP	5
NEXT	
END	
STOP	

LISTING OF PROGRAM

```
PROGRAM MAIN(INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE2, TAPE3,
                                                                                 MAIN
                                                                                 MAIN
                     TAPE8, TAPE9)
     1
                                                                                 MAIN
          MAIN PROGRAM
C****
                                                                                 MAIN
      LOGICAL PCOMP
                                                                                 MAIN
      COMMON /PRSIZE/ MAX
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR COMMON /LABELS/ PDIS(6), A(6), BC(2), DI(6), CD(3), FD(3)
                                                                                 MAIN
                                                                                 MAIN
                                                                                        8
      COMMON /LODATA/ NDF, NDM, NEN, NST, NKM
                                                                                 MAIN
                                                                                 MAIN
      COMMON /PARATS/ NPAR(14), NEND
                                                                                 MAIN 10
      DIMENSION TITL(20), WD(3)
                                                                                 MAIN 11
      COMMON G(39000)
                                                                                 MAIN 12
      DIMENSION M(39000)
                                                                                 MAIN 13
      EQUIVALENCE (G(1),M(1))
                                                                                 MAIN 14
      MAX=39000
                                                                                 MAIN 15
      WD(1)=4HFECM
                                                                                 MAIN 16
      WD(2)=4HMACR
                                                                                 MAIN 17
      WD(3)=4HSTOP
                                                                                 MAIN 18
  999 READ(5,1000) TITL
                                                                                 MAIN 19
       IF(PCOMP(TITL(1), WD(1))) GO TO 100
                                                                                 MAIN 20
       IF(PCOMP(TITL(1),WD(2))) GO TO 200
                                                                                 MAIN 21
       IF(PCOMP(TITL(1),WD(3))) STOP
                                                                                 WAIN 22
       GO TO 999
                                                                                 MAIN 23
  100 DO 101 I=1,20
                                                                                 MAIN 24
  101 HEAD(I)=TITL(I)
                                                                                 MAIN 25
       READ(5,1001) NUMNP, NUMEL, LAYER, NDM, NDF, NEN
                                                                                 WAIN 56
       WRITE(6,2000) HEAD, NUMNP, NUMEL, LAYER, NDM, NDF, NEN
                                                                                  MAIN 27
       PDIS(2)=A(NDM)
                                                                                  MAIN 28
       NST=NEN*NDF
                                                                                  MAIN 29
       DO 110 I=1,14
                                                                                  MAIN 30
   110 NPAR(I)=1
                                                                                  MAIN 31
       NPAR(1)=1
                                                                                  MAIN 32
       NPAR(2)=NPAR(1)+3*NST*IPR
                                                                                  MAIN 33
       NPAR(3)=NPAR(2)+NDM*NEN*IPR
                                                                                  MAIN 34
       NPAR(4)=NPAR(3)+NST
                                                                                  MAIN 35
       NPAR(5)=NPAR(4)+NST*IPR
                                                                                  MAIN 36
       NPAR(6)=NPAR(5)+NEN*NUMEL
                                                                                  MAIN 37
       NPAR(7)=NPAR(6)+NDF*NUMNP
                                                                                  MAIN 38
       NPAR(8)=NPAR(7)+NDM*NUMNP*IPR
                                                                                  MAIN 39
       NPAR(9)=NPAR(8)+NDF*NUMNP*IPR
                                                                                  MAIN 40
       NPAR(10)=NPAR(9)+NDF*NUMNP
                                                                                  MAIN 41
       CALL SETMEM(NPAR(9))
                                                                                  MAIN 42
       CALL PZERO(G(1), NPAR(9))
       CALL PMESH(M(NPAR(3)),G(NPAR(2)),M(NPAR(5)),M(NPAR(6)),
                                                                                  MAIN 43
          G(NPAR(7)),G(NPAR(8)),M(NPAR(9)),NDF,NDM,NEN,NKM)
                                                                                  MAIN 44
                                                                                  MAIN 45
       NPAR(10)=NPAR(9)+NEO
                                                                                  MAIN 46
       NPAR(11)=NPAR(10)+NDF*NUMNP*IPR
                                                                                  MAIN 47
       MEND=NPAR(11)+NEO*IPR
                                                                                  MAIN 48
       NE=NEND
                                                                                  MAIN 49
       CALL SETMEN(NE)
                                                                                  MAIN 50
       CALL PZERO(G(NPAR(10)), NE-NPAR(10))
                                                                                  MAIN 51
       GO TO 999
                                                                                  MAIN 52
   200 CALL PMACR(G(NPAR(1)),G(NPAR(2)),M(NPAR(3)),G(NPAR(4)),
          M(NPAR(5)), M(NPAR(6)), G(NPAR(7)), G(NPAR(8)), M(NPAR(9)),
                                                                                  MAIN 53
                                                                                  MAIN 54
           G(NPAR(10)),G(NPAR(11)),G(NE),NDF,NDM,NEN,NST)
                                                                                  MAIN 55
       CALL PZERO(G, MAX)
                                                                                  MAIN 56
       GO TO 999
                                                                                  MAIN 57
  1000 FORMAT(20A4)
                                                                                  MAIN 58
  1001 FORMAT(16I5)
                                                                                  MAIN 59
  2000 FORMAT(1H1,20A4//
                                                                                  MAIN 60
           5X,≠CONTROL INFORMATION S≠//
           10%, 35HNUMBER OF NODAL POINTS
                                                        =, I6/
                                                                                  MAIN 61
           10%, 35HNUMBER OF ELEMENTS
10%, 35HNUMBER OF MATERIAL LAYERS
10%, 35HDIMENSION OF COORDINATE SPACE
                                                                                  MAIN 62
                                                         =, I6/
                                                        =, I6/
                                                                                  MAIN 63
           10X,35HDECREES OF FREEDOM FOR EACH NODE =,16/
10X,35HNODES PER ELEMENT (MAXIMUM)
                                                                                  MAIN 64
                                                                                  MAIN 65
                                                                                  MAIN 66
                                                                                  MAIN 67
       END
```

```
С
                                                                                   BLOC 1
     BLOCK DATA
                                                                                   BLOC
C**** BLOCK DATA
      COMMON /CTDATA/ O, HEAD(20), NUMMP, NUMEL, LAYER, NEG, IPR
                                                                                   BLOC
BLOC
      COMMON /LABELS/ PDIS(6),A(6),BC(2),DI(6),CD(3),FD(3)
                                                                                   BLOC
      DATA 0/1H1/, IPR/1/
      DATA PDIS/4H(I10,2H,,4HF13.,4H4,,4H5E13,4H.4) / DATA A/2H,1,2H,2,2H,3,2H,4,2H,5,2H,6/
                                                                                   BLOC
                                                                                    BLOC
                                                                                   BLOC
       DATA BC/4H B.C, 2H. /
                                                                                   BLOC
                                                                                          c)
      DATA DI/4H DIS, 2HPL, 4H VEL, 2HOC, 4H ACC, 2HEL/
                                                                                   BLOC 10
BLOC 11
      DATA CD/4H COO, 4HRDIN, 4HATES/
      DATA FD/4H FOR, 4HCE/D, 4HISPL/
                                                                                   BLOC 12
С
      SUBROUTINE PMACR(UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, B, CT, NDF, NDM,
                                                                                   PMAC
                                                                                   PMAC 2
                         NEN NST)
NEN. NST)

C**** MACRO INSTRUCTION ROUTINE
                                                                                   PMAC
                                                                                   PMAC
     LOGICAL PCOMP
                                                                                   PMAC
      COMMON G(1)
                                                                                   PMAC
      DIMENSION M(1)
                                                                                   PMAC
      EQUIVALENCE (G(1),M(1))
                                                                                          8
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEG, IPR
                                                                                   PMAC
                                                                                   PMAC 9
       COMMON /PROLOD/ PROP
      COMMON /PROLOD/ PROP
COMMON /TMDATA/ TIME, DT, DDT, FORCE, ALPHA
COMMON /ISWIDX/ ISW
COMMON /PARATS/ NPAR(14), NEND
                                                                                   PMAC 10
                                                                                   PMAC 11
                                                                                   PMAC 12
PMAC 13
      COMMON /RODATA/ UR, IQ, NDS
      DIMENSION UL(1),XL(1),LD(1),P(1),IX(1),ID(1),X(1),F(1),
                                                                                  PMAC 14
                                                                                   PMAC 15
PMAC 16

    JDIAG(1),DR(1),B(1)

      DIMENSION WD(9), CT(4,16), LVE(9)
      DATA WD/4HLOOP, 4HNEXT, 4HDT , 4HPROP, 4HLMAS, 4HRODP,

4HSTRE, 4HDISP, 4HCHEC/
                                                                                   PMAC 17
                                                                                   PMAC 18
PMAC 19
     DATA NWD/9/, ENDM/4HEND /
C.... INITIALIZATION

DT = 0.0
                                                                                    PMAC 20
                                                                                    PMAC 21
                                                                                    PMAC 22
      PROP = 1.0
                                                                                    PMAC 23
       TIME = 0.0
                                                                                    PMAC 24
       NNEQ = NDF*NUMNP
                                                                                    PMAC 25
PMAC 26
       NPLD = 0
       FORCE= 0.
                                                                                    PMAC 27
       ALPHA= 0.
                                                                                    PMAC 28
PMAC 29
       WRITE(6,2001) 0,HEAD
       LL = 1
                                                                                    PMAC 30
       LMAX = 16
                                                                                    PMAC 31
PMAC 32
PMAC 33
       CALL SETMEM(NEND+LMAX*4*IPR)
CT(1,1) = WD(1)
       CT(3,1) = 1.0
                                                                                    PMAC 34
  100 LL = LL + 1
IF(LL.LT.LMAX) GO TO 110
                                                                                    PMAC 35
                                                                                    PMAC 35
PMAC 37
       LMAX = LMAX + 16
       CALL SETMEM(NEND+LMAX#4#IPR)
       WRITE(6,2000) (CT(J,LL),J=1,4)
IF(,NOT.PCOMP(CT(1,LL), J=1,4)
                                                                                    PMAC 38
  110 READ(5,1000) (CT(J,LL),J=1,4)
                                                                                    PMAC 39
PMAC 40
       IF(.NOT.PCOMP(CT(1,LL),ENDM)) GO TO 100
                                                                                    PMAC 41
       CT(1,LL) = WD(2)
                                                                                    PMAC 42
PMAC 43
       NEND = NEND +LMAX*4*IPR
       LX = LL - 1
                                                                                    PMAC 44
       DO 230 L=1,LX
                                                                                    PMAC 45
       IF(.NOT.PCOMP(CT(1,L),WD(1))) GO TO 230
                                                                                    PMAC 46
       J = 1
                                                                                    PMAC 47
       K = L + 1
                                                                                    PMAC 48
PMAC 49
       DO 210 I=K,LL
       IF(PCOMP(CT(1,I),WD(1))) J = J + 1
                                                                                    PMAC 50
       IF(J .GT. 9) GO TO 401
       IF(PCOMP(CT(1,I),WB(2))) J = J - 1
                                                                                    PMAC 51
                                                                                    PMAC 52
PMAC 53
  210 IF(J.EQ.0) GO TO 220
       GO TO 400
                                                                                    PMAC 54
  220 \text{ CT}(4,I) = L
                                                                                    PMAC 55
       CT(4,L) = I
                                                                                    PMAC 5S
  230 CONTINUE
```

```
PMAC 57
      0 = L
                                                                               PMAC
                                                                                     58
      DO 240 L=1,LL
                                                                               PMAC 59
      IF(PCOMP(CT(1,L),WD(1))) J = J + 1
                                                                               PMAC 60
  240 IF(PCOMP(CT(1,L),WD(2))) J = J - 1
                                                                               PMAC 61
      IF(J.NE.0) GO TO 400
                                                                               PMAC 62
      LV = 0
                                                                               PMAC 63
      L = 1
                                                                               PMAC 64
  299 DO 300 J=1, NWD
                                                                               PMAC 65
  300 IF(PCOMP(CT(1,L),WD(J))) GO TO 310
                                                                                PMAC 66
      GO TO 330
                                                                               PMAC 67
  310 I = L - 1
                                                                                PMAC 68
      GO TO (1,2,3,4,5,6,7,8,9),J
                                                                                PMAC 69
         SET LOOP START INDICATORS
                                                                                PMAC 70
    1 LV = LV + 1
                                                                                PMAC 71
PMAC 72
      LX = CT(4,L)
      LUE(LU) = LX
                                                                                PMAC 73
      CT(3,LX) = 1.
                                                                                PMAC 74
      GO TO 330
                                                                                PMAC
                                                                                     75
         LOOP TERMINATOR CONTROL
                                                                                PMAC 76
    2 N = CT(4,L)
      CT(3,L) = CT(3,L) + 1.0
                                                                                PMAC 77
                                                                                PMAC 78
      IF(CT(3,L).GT.CT(3,N)) LU = LU - 1
                                                                                     79
                                                                                PMAC
      IF(CT(3,L),LE,CT(3,N)) L = N
                                                                                PMAC 80
      GO TO 330
SET TIME INCREMENT
                                                                                PMAC 81
    3 DT = CT(3,L)
                                                                                PMAC 82
                                                                                PMAC 83
      DDT= DT*DT
                                                                                PMAC 84
      GO TO 330
                                                                                PMAC 85
          INPUT PROPORTIONAL LOAD TABLE
                                                                                PMAC 86
    4 \text{ NPLD} = \text{CT}(3, L)
                                                                                PMAC 87
      PROP = PROPLD(0., NPLD)
                                                                                PMAC 88
PMAC 89
      GO TO 330
         FORM LUMPED MASS MATRIX
                                                                                PMAC 90
    5 ISW=3
                                                                                PMAC 91
PMAC 92
      CALL KMLIB
      GO TO 330
                                                                                PMAC 93
          IMPACT
                                                                                PMAC 94
PMAC 95
    6 NDS=CT(3,L)
       IF(NDS.EQ.O) NDS=1
                                                                                PMAC 96
      CALL RODIPCT
                                                                                PMAC 97
PMAC 98
PMAC 99
      GO TO 330
7 ISW=4
          PRINT STRESS/STRAIN VALUE
                                                                                PMAC100
       LX = LVE(LV)
                                                                                PMAC101
       IF(AMOD(CT(3,LX),AMAX1(CT(3,L),1.))) 330,71,330
   71 CALL FSTREA(UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, B, NDF, NDM, NEN, NST, NNEQ)
                                                                                PMAC102
                                                                                PMAC103
      GO TO 330
                                                                                PMAC104
         PRINT DISPLACEMENTS
                                                                                PMAC105
    8 LX = LVE(LV)
                                                                                PMAC106
       IF(AMOD(CT(3,LX),AMAX1(CT(3,L),1.))) 330,81,330
                                                                                PMAC107
   81 CALL FRIDIS(UL, ID, X, B, F, DR, NDM, NDF)
                                                                                PMAC108
       GO TO 330
                                                                                PMAC109
C.... CHECK
9 WRITE(6,5001) NEND, JDIAG(NEQ)
                                                                                PMAC110
                                                                                PMAC111
      RETURN
                                                                                PMAC112
  330 L=L+1
                                                                                PMAC113
       IF(L.GT.LL) RETURN
                                                                                PMAC114
       GO TO 299
                                                                                PMAC115
          PRINT ERROR FORMATS
                                                                                PMAC116
  400 WRITE(6,4000)
                                                                                PMAC117
       RETURN
                                                                                PMAC118
  401 WRITE(6,4001)
                                                                                PMAC119
      RETURN
                                                                                PMAC120
          INPUT/OUTPUT FORMATS
                                                                                PMAC121
 1000 FORMAT(A4, 1X, A4, 1X, 2F5.0)
                                                                                PMAC122
 2000 FORMAT(10X, A4, 1X, A4, 1X, 2G15.5)
 2001 FORMAT(A1,20A4//,5X,18HMACRO INSTRUCTIONS//5X,15HMACRO STATEMENT
                                                                                PMAC123
                                                                                PMAC124
          ,5X,10HUARIABLE 1,5X,10HUARIABLE 2)
 4000 FORMAT(5%,46H**PMACR ERROR 01** UNBALANCED LOOP/NEXT MACROS )
                                                                                PMAC125
                                                                                PMAC126
 4001 FORMAT(5X, 45H**PMACR ERROE 02** LOOPS NESTED DEEPER THAN 8)
```

```
5001 FORMAT(1H1,///5X,32HCHECK MESH DATA AND MEMORY SPACE// PMAC128
                                                                           PMAC128
     ^ 10X,12H NEND =, I10//10X, 12HJDIAG(NEQ) =, I10)
                                                                           PMAC129
С
      SUBROUTINE PZERO(V, NN)
                                                                           PZER
        ZERO REAL ARRAY
ር<sub>ቅቅኞኞ</sub>
                                                                           PZER
                                                                                  3
      DIMENSION U(NN)
                                                                           PZER
      DO 100 N=1,NN
                                                                           PZER
  100 \text{ U(N)} = 0.0
                                                                           PZER
                                                                                 G
      RETURN
                                                                           PZER
С
                                                                           SETM
      SUBROUTINE SETMEM(J)
        MONITOR AVAIABLE MEMORY IN BLANK COMMON
                                                                           SETM
C****
                                                                           SETM
      COMMON /PRSIZE/ MAX
                                                                           SETM 4
      K = J
                                                                           SETM
      IF(K.LE.MAX) RETURN
                                                                           SETM
      WRITE(6,1000) K, MAX
                                                                           SETM
      STOP
 1000 FORMAT(5%,49H**SETMEM ERROR 01** INSUFFICIENT STORAGE IN BLANK,
                                                                           SETM 8
                                                                                 3
    A SH COMMON //17X,11HREQUIRED =,18/17X,11HAVAILABLE =,18)
                                                                           SETM
                                                                           SETM 10
                                                                           PCOM 1
     LOGICAL FUNCTION PCOMP(A,B)
                                                                           PCOM 2
        LOGICAL COMPARISON
C####
                                                                           PCOM 3
      IF(A-B) 10,20,10
                                                                           PCOM 4
   10 PCOMP = .FALSE.
                                                                           PCOM 5
      RETURN
                                                                           PCOM
   20 PCOMP = .TRUE.
                                                                           PCON 7
      RETURN
                                                                           PCOM 8
С
      SUBROUTINE ACTCOL(A,B,JDIAG,NEQ,AFAC,BACK,ISS)
ACTIVE COLUMN PROFILE SYMMETRIC EQUATION SOLVER
                                                                           ACTC 1
                                                                           ACTC
C****
                                                                           ACTO
      LOGICAL AFAC, BACK, FLAG
                                                                           ACTO
      DIMENSION A(1), B(1), JDIAG(1)
       FACTOR A TO UT*D*U, REDUCE B
                                                                                 5
                                                                           ACTC
                                                                           ACTO
                                                                                 6
     FLAG=.FALSE.
                                                                           ACTC
      JR = 0
                                                                           ACTC
      DO 600 J=1, NEQ
                                                                           ACTC
                                                                                 9
      JD = JDIAG(J)
                                                                           ACTC 10
      JH = JD - JR
IS = J - JH + 2
                                                                           ACTC 11
                                                                           ACTC 12
      IF(JH-2) 600,300,100
                                                                           ACTC 13
  100 IF(.NOT.AFAC) GO TO 500
                                                                           ACTO
                                                                                14
      IE = J - 1
                                                                           ACTC 15
      K = JR + 2
                                                                           ACTC 16
      ID = JDIAG(IS-1)
                                                                           ACTC 17
        REDUCE ALL EQUATIONS EXCEPT DIAGONAL
                                                                           ACTC
                                                                                18
      DO 200 I=IS, IE
                                                                           ACTC 19
      IR = ID
                                                                           ACTC 20
      ID = JDIAG(I)
                                                                           ACTC 21
      IH = MINO(ID-IR-1, I-IS+1)
                                                                           ACTC 22
      IF(IH.GT.O) A(K)=A(K)-DOT(A(K-IH),A(ID-IH),IH)
                                                                            ACTC 23
  200 K = K + 1
                                                                            ACTC 24
        REDUCE DIGONAL TERM
C....
                                                                            ACTC 25
  300 IF(.NOT.AFAC) GO TO 500
                                                                            ACTC 26
      IR = JR + 1
                                                                            ACTC 27
      IE = JD - \bar{1}
                                                                            ACTC 28
      K = J - JD
                                                                            ACTC 29
      DO 400 I=IR, IE
                                                                            ACTC 30
      ID = JDIAG(K+I)
                                                                            ACTC
                                                                                 31
      IF(A(ID)) 301,400,301
                                                                            ACTC 32
  301 D = A(I)
                                                                            ACTC 33
      A(I) = A(I)/A(ID)
                                                                            ACTC 34
      (I)A*I - (IL)A = (IL)A
                                                                            ACTC
                                                                                 35
  400 CONTINUE
                                                                            ACTC 36
      IF(A(JD))450,450,500
                                                                           ACTC 37
ACTC 38
  450 IF(ISS.NE.0) GO TO 500
      IF(FLAG) GO TO 465
```

```
ACTC 39
      WRITE(6,460)
460 FORMAT(//50H**ACTCOL ERROR 01** STIFFNESS MATRIX NOT POSITIVE ,
                                                                               ACTC 40
                                                                               ACTC 41
        8HDEFINITE)
     1
                                                                               ACTC 42
      FLAG=.TRUE.
                                                                               ACTC 43
  465 WRITE(6,466) J,A(JD)
  466 FORMAT(32H NONPOSITIVE PIVOT FOR EQUATION , 14,5X,7HPOVIT =,
                                                                               ACTC 44
                                                                               ACTC 45
    ^ E20.10)
                                                                               ACTC 46
         REDUCE RHS
  500 IF(BACK) B(J) = B(J) - DOT(A(JR+1), B(IS-1), JH-1)
                                                                               ACTC 47
                                                                               ACTC 48
  600 JR = JD
      IF(FLAG) STOP
                                                                               ACTC 49
                                                                               ACTC 50
ACTC 51
      IF(.NOT.BACK) RETURN
         DIVIDED BY DIAGONAL PIVOTS
                                                                               ACTC 52
      DO 700 I=1,NEQ
                                                                               ACTC 53
      ID = JDIAG(I)
                                                                               ACTC 54
      IF(A(ID)) 650,700,650
                                                                               ACTC 55
  650 B(I) = B(I)/A(ID)
  700 CONTINUE
                                                                               ACTC 56
                                                                               ACTC
                                                                                    57
        BACK SUBSTITUTE
                                                                               ACTC 58
      J = NEQ
                                                                               ACTC 59
      JD = JDTAG(J)
  800 \ \overline{D} = B(J)
                                                                               ACTC 60
                                                                               ACTC 61
      J = J - 1
                                                                               ACTC 62
      IF(J.LE.0) RETURN
      JR = JDIAG(\overline{J})
                                                                               ACTC 63
                                                                               ACTC 64
      IF(JD-JR.LE.1) GO TO 1000
      IS = J - JD + JR + 2
K = JR - IS + 1
                                                                               ACTC 65
                                                                               ACTC 66
                                                                               ACTC 67
      DO 900 I=IS, J
                                                                               ACTC 68
  900 B(I) = B(I) - A(I+K)*D
                                                                               ACTC 69
 1000 JD = JR
                                                                               ACTC 70
ACTC 71
      GO TO 800
      FND
C
      SUBROUTINE ADDSTF(A,S,P,JDIAG,LD,NST,NEL,FLG)
                                                                               ADDS
                                                                               ADDS
                                                                                     5
         ASSEMBLE GLOBAL ARRAYS
C****
                                                                                     3
                                                                               ADDS
      LOGICAL FLG
                                                                               ADDS
      DIMENSION A(1), S(NST, 1), P(1), JDIAG(1), LD(1)
                                                                               ADDS
                                                                                     5
      DO 200 J=1, NEL
                                                                                     8
      K = LD(J)
                                                                               ADDS
                                                                               ADDS
      IF(K.EQ.0) GO TO 200
                                                                               ADDS
                                                                                     8
      IF(FLG) GO TO 50
                                                                               ADDS
                                                                                     9
      A(K)=A(K)+P(J)
                                                                               ADDS 10
      GO TO 200
                                                                               ADDS 11
   50 L = JDIAG(K) - K
      DO 100 I=1, NEL
                                                                               ADDS 12
                                                                               ADDS 13
      M = LD(I)
      IF(M.GT.K .OR. M.EQ.O) GO TO 100
                                                                               ADDS 14
                                                                               ADDS 15
      M = L + M
                                                                               ADDS 16
      A(M)=A(M)+S(I,J)
                                                                               ADDS 17
  100 CONTINUE
                                                                               ADDS 18
  200 CONTINUE
                                                                               ADDS 19
      RETURN
                                                                               ADDS 20
      END
C
                                                                               DOT
                                                                                      1
      FUNCTION DOT(A, B, N)
                                                                                      2
                                                                               DOT
C****
         VECTOR DOT PRODUCT
                                                                                      3
                                                                               DOT
      DIMENSION A(1), B(1)
                                                                               DOT
                                                                                      4
      DOT = 0.0
                                                                               DOT
                                                                                      5
      DO 100 I=1,N
                                                                               DOT
                                                                                      6
  100 BOT = DOT + A(I)*B(I)
      RETURN
                                                                               DOT
                                                                                      8
                                                                               DOT
      END
C
                                                                               PLOA
      SUBROUTINE PLOAD(ID, F, B, NN, P)
                                                                               PLOA
         FORM LOAD VECTOR IN COMPACT FORM
                                                                                      2
Casse
                                                                               PLOA
                                                                                      3
      DIMENSION ID(1), F(1), B(1)
                                                                               PLOA
      DO 100 N=1,NN
                                                                               PLOA
                                                                                      5
       J=ID(N)
  100 IF(J.GT.0) B(J)=F(N)*P
                                                                               PLOA
                                                                                      6
```

```
PLOA
         RETURN
                                                                                      PLOA
         END
  C
                                                                                      PROP
         FUNCTION PROPLD(T, J)
                                                                                      PROP
            PROPORTIONAL LOAD TABLE (ONE LOAD CARD ONLY)
  C****
                                                                                      PROP
         COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEG, IPR
                                                                                      PROP
         DIMENSION A(5)
                                                                                      PROP
                                                                                             5
         IF (J .LE. 0) GO TO 200
            INPUT TABLE OF PROPORTIONAL LOADS
                                                                                      PROP
                                                                                             6
                                                                                      PROP
                                                                                      PROP
                          K_0L_0 TMIN, TMAX, (A(KKK), KKK=1,5)
         READ(5, 1000)
                                                                                      PROP
         WRITE(6,2000) O, HEAD, I, K, L, TMIN, TMAX, (A(KKK), KKK=1,5)
                                                                                      PROP 10
         RETURN
C....
                                                                                      PROP
                                                                                           11
            COMPUTE VALUE AT TIME T
                                                                                      FROP 12
    200 PROPLD = 0.0
                                                                                      PROP 13
         IF(T.LT.TMIN .OR. T.GT.TMAX) RETURN
                                                                                      PROP 14
         L = MAXO(L_{\bullet}1)
                                                                                      PROP
         PROPLD = A(1)+A(2)*T+A(3)*(SIN(A(4)*T+A(5)))**L
                                                                                      PROP 16
         RETURN
                                                                                      PROP 17
   1000 FORMAT(215,7F10.0)
   2000 FORMAT(A1,20A4//5X,23HPROPORTIONAL LOAD TABLE//11H NUMBER ,
1 43H TYPE EXP. MINIMUM TIME MAXIMUM TIME,13X,2HA1,13X,
2 2HA2,13X,2HA3,13X,2HA4,13X,2HA5/(318,7G15.5))
                                                                                      PROP 18
                                                                                      PROP 19
                                                                                      PROP 20
                                                                                      PROP 21
  C
                                                                                      PRID
         SUBROUTINE PRIDIS(UL, ID, X, B, F, T, NDM, NDF)
                                                                                      PRTD
                                                                                            - 2
            OUTPUT NODAL VALUES
  Cases
                                                                                      PRID
                                                                                             3
         LOGICAL PCOMP
                                                                                      PRTD
                                                                                             4
         COMMON /PROLOD/ PROP
                                                                                      PRTD
                                                                                            5
         COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
         COMMON /LABELS/ PDIS(6),A(6),BC(2),DI(6),CD(3),FD(3)
COMMON /TMDATA/ TIME,DT,DDT,FORCE,ALPHA
                                                                                      PRTD
                                                                                      PRTD
         DIMENSION X(NDM, 1), B(1), UL(6), ID(NDF, 1), F(NDF, 1), T(1)
                                                                                      PRTD
                                                                                             8
                                                                                      PRTD
                                                                                             C;
         DATA BL/4HBLAN/
                                                                                      PRTD 10
         DO 102 N=1, NUMNP
                                                                                      PRTD 11
         IF(PCOMP(X(1,N),BL)) GO TO 101
                                                                                      PRTD 12
         DO 100 I=1,NDF
                                                                                      PRTD 13
         UL(I) = F(I,N)*PROP
                                                                                      PRTD 14
         K = IABS(ID(I,N))
                                                                                      PRTD 15
     100 IF(K.GT.0) UL(I)=B(K)
                                                                                      PRTD 16
         T(N)=UL(3)
                                                                                      PRTD 17
     101 CONTINUE
                                                                                      PRTD 18
     102 CONTINUE
                                                                                      PRTD 19
         WRITE(3,2001) (T(I), I=1, NUMNP)
                                                                                      PRTD 20
         RETURN
                                                                                      PRTD 21
   2001 FORMAT(6E12.4)
                                                                                      PRTD 22
         END
  С
         SUBROUTINE FSTREA(UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, B, NDF, NDM, NEN,
                                                                                      FSTR
                                                                                             2
                                                                                      FSTR
                              NST, NNEQ)
                                                                                      FSTR
                                                                                             3
             ELEMENT ROUTINE
  Carre
                                                                                             4
         COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
                                                                                      FSTR
                                                                                      FSTR
                                                                                             5
         COMMON /ELDATA/ N, NEL, MCT
                                                                                             6
                                                                                      FSTR
         COMMON /ISWIDX/ ISW
                                                                                      FSTR
                                                                                             7
         COMMON /PROLOD/ PROP
                                                                                      FSTR
         DIMENSION UL(NDF,1),XL(NDM,1),LD(NDF,1),P(1),IX(NEN,1),
             ID(NDF,1),X(NDM,1),F(NDF,1),JDIAG(1),DR(1),B(1),S(1)
                                                                                      FSTR
                                                                                             9
                                                                                      FSTR 10
         IF(ISW.EQ.5) CALL PLOAD(ID, F, DR, NNEQ, PROP)
                                                                                      FSTR 11
         MCT=0
                                                                                      FSTR 12
         DO 110 N=1, NUMEL
         CALL PFORM(UL, XL, LD, IX, ID, X, F, B, NDF, NDM, NEN, ISW)
CALL ELMT01(UL, XL, IX(1, N), P, NDF, NDM, NST, ISW)
                                                                                     FSTR 13
                                                                                      FSTR 14
         IF(ISW.NE.4) CALL ADDSTF(DR,S,P,JDIAG,LD,1,NEL*NDF,.FALSE.)
                                                                                      FSTR 15
                                                                                      FSTR 16
     110 CONTINUE
                                                                                      FSTR 17
         RETURN
                                                                                      FSTR 18
         END
  C
                                                                                      PEOR 1
         SUBROUTINE PFORM(UL, XL, LD, IX, ID, X, F, U, NDF, NDM, NEN, ISW)
                                                                                      PFOR 2
             FORM LOCAL ARRAYS
  Γጵጵጵጵ
                                                                                      PFOR
                                                                                             3
         COMMON /ELDATA/ N, NEL, MCT
```

```
PFOR
      COMMON /PROLOD/ PROP
      DIMENSION UL(NDF,1), XL(NDM,1), LD(NDF,1), IX(NEN,1), ID(NDF,1),
                                                                                  PFOR
                                                                                  PFOR
         X(NDM,1),F(NDF,1),U(1)
                                                                                  PFOR
      DO 108 I=1, NEN
                                                                                        7
      II = IX(I,N)
                                                                                  PFOR
                                                                                        8
                                                                                  PFOR
                                                                                        9
      IF(II .NE. 0) GO TO 105
      DO 103 J=1,NDM
                                                                                  PFOR 10
                                                                                  PFOR 11
  103 \times (J_{\bullet}I) = 0.
      DO 104 J=1,NDF
                                                                                  PFOR 12
                                                                                  PFOR 13
      UL(J,I) = 0.
  104 LD(J,I) = 0
                                                                                  PFOR 14
                                                                                  PFOR 15
      GO TO 108
                                                                                  PFOR 16
  105 IID = II*NDF - NDF
      NEL = I
                                                                                  PFOR 17
                                                                                  PFOR 18
      DO 106 J=1,NDM
  106 XL(J,I) = X(J,II)

DO 107 J=1,NDF
                                                                                  PFOR 19
                                                                                  PFOR 20
      K = IABS(ID(J,II))
                                                                                  PFOR 21
      UL(J,I) = F(J,II)*PROP
                                                                                  PFOR 22
                                                                                  PFOR 23
      IF(K.GT.0) UL(J,I)=U(K)
      IF(ISW.EQ.6) K=IID+J
                                                                                  PFOR 24
                                                                                  PFOR 25
  107 LD(J,I) = K
                                                                                  PFOR 26
  108 CONTINUE
      RETURN
                                                                                  PFOR 27
                                                                                  PFOR 28
      END
C
      SUBROUTINE ELMT01(UL, XL, IX, P, NDF, NDM, NST, ISW)
                                                                                 ELMT
         LINEAR ELASTIC IN-PLANE ~ BENDING ELEMENT ROUTINE
                                                                                 ELMT
      LOGICAL TAN
                                                                                 ELMT
                                                                                        4
                                                                                  ELMT
      COMMON /ELDATA/ N, NEL, MCT
      COMMON /MTDATA/ RHO, VU12, E1, E2, G12, G13, G23, THK, WIDTH
                                                                                  ELMT
                                                                                        5
      COMMON /COMPST/ ABD(6,6), DS(2,2), QBR(3,3,25), QBS(2,2,25),
                                                                                 ELMT
                                                                                        6
                                                                                  ELMT
                         TH(25), ZK(25)
      COMMON /DMATIX/ D(10), DB(6,6), LINT
COMMON /TMDATA/ TIME, DT, DDT, FORCE, ALPHA
                                                                                  ELMT
                                                                                        8
                                                                                  ELMT
                                                                                        9
      COMMON /GAUSSP/ SG(16),TG(16),WG(16)
COMMON /EXTRAS/ TAN
                                                                                 ELMT 10
                                                                                 ELMT 11
      DIMENSION UL(NDF,1), XL(NDM,1), IX(1), P(1), SHP(3,12),
                                                                                 ELMT 12
         SIGT(3), SIGB(3), SIGS(2), EPT(3), EPB(3), EPS(2)
                                                                                 ELMT 13
С
                                                                                  ELMT 14
                                                                                 ELMT 15
      DO 20 L=1,NST
                                                                                 ELMT 16
   20 P(L) = 0.0
          COMPUTE NEUTRAL STRAINS AND STRESS RESULTANTS
                                                                                  ELMT 17
                                                                                 ELMT 18
      L = D(1)
                                                                                 ELMT 19
      IF(ISW.EQ.4) L=D(3)
      CALL PGAUSS(L, LINT)
                                                                                  ELMT 20
                                                                                 ELMT 21
      DO 600 L=1,LINT
          COMPUTE ELEMENT SHAPE FUNCTIONS
                                                                                 ELMT 22
      CALL SHAPE(SG(L), TG(L), XL, SHP, XSJ, NDM, NEL, IX, .FALSE.)
                                                                                 ELMT 23
                                                                                 ELMT 24
          COMPUTE STRAINS AND COORDINATES
                                                                                 ELMT 25
      DO 410 I=1,3
                                                                                  ELMT 26
      EPT(I) = 0.0
  410 \text{ EPB}(I) = 0.0
                                                                                  ELMT 27
                                                                                  ELMT 28
      DO 420 I=1,2
                                                                                  ELMT 29
  420 EPS(I) = 0.0
      XX = 0.0
                                                                                  ELMT 30
      YY = 0.0
                                                                                  ELMT 31
      DO 430 J=1, NEL
                                                                                  ELMT 32
      XX = XX + SHP(3,J)*XL(1,J)

YY = YY + SHP(3,J)*XL(2,J)
                                                                                  ELMT
                                                                                       33
                                                                                  ELMT 34
                                                                                  ELMT 35
          IN-PLANE STRAINS
      EPT(1) = EPT(1) + SHP(1,J)*UL(1,J)
                                                                                  ELMT 36
      EPT(2) = EPT(2) + SHP(2,J)*UL(2,J)
                                                                                  ELMT
      EPT(3) = EPT(3) + SHP(1,J)*UL(2,J) + SHP(2,J)*UL(1,J)
                                                                                  ELMT 38
          BENDING CURVATURES
                                                                                  ELMT 39
      EPB(1) = EPB(1) - SHP(1,J)*UL(4,J)
EPB(2) = EPB(2) - SHP(2,J)*UL(5,J)
                                                                                  ELMT 40
                                                                                  ELMT 41
      EPB(3) = EPB(3) - SHP(1,J)*UL(5,J) - SHP(2,J)*UL(4,J)
                                                                                  ELMT 42
                                                                                  ELMT 43
          SHEARING STRAINS
      EPS(1) = EPS(1) + SHP(1,J)*UL(3,J) - SHP(3,J)*UL(4,J)
                                                                                  ELMT 44
```

```
ELMT 45
  430 EPS(2) = EPS(2) + SHP(2,J)*UL(3,J) - SHP(3,J)*UL(5,J)
                                                                      ELMT 46
     IF(ISW.EQ.5.AND.TAN)
                                                                       ELMT 47
     ^ WRITE(9,9001) N,L,(EPB(II),II=1,3),(EPS(II),I=1,2)
                                                                       ELMT 48
 9001 FORMAT(216,5E12.4)
                                                                       ELMT 49
С ..
       COMPUTE STRESS RESULTANTS
                                                                       ELMT 50
      DO 440 I=1,3
                                                                       ELMT 51
      SIGT(I) = 0.
     SIGB(I) = 0.

SIGB(I) = 0.

DO 440 J=1,3

SIGT(I) = SIGT(I) + ABD(I,J)*EPT(J) + ABD(I,J+3)*EPB(J)

ELMT 54

ELMT 55

ELMT 55

ELMT 55

ELMT 55
                                                                       ELMT 52
  440 SIGB(I) = SIGB(I) + ABD(I+3,J)*EPT(J) + ABD(I+3,J+3)*EPB(J)
      DO 450 I=1,2
                                                                      ELMT 57
      SIGS(I) = 0.
                                                                      ELMT 58
     DO 450 J=1,2
                                                                       ELMT 59
  450 SIGS(I) = SIGS(I) + DS(I,J)*EPS(J)
     IF(ISW.GT.4) GO TO G20
OUTPUT STRESS RESULTANTS AND STRAINS
                                                                      ELMT SO
                                                                      ELMT G1
                                                                      ELMT 62
     MCT = MCT - 2
                                                                      ELMT 03
      IF(MCT.GT.0) GO TO 470
                                                                      ELMT G4
      WRITE(6,2001) TIME
                                                                      ELMT 60
      MCT = 50
  470 WRITE(6,2002) N,XX,YY,EPT,EPB,EPS,SIGT,SIGB,SIGS
                                                                       ELMT GS
                                                                      ELMT S7
     CO TO 600
                                                                      ELMT G8
        COMPUTE INTERAL FORCES
                                                                      ELMT 69
  620 DV = XSJ*WG(L)
                                                                       ELMT 70
     Ji = 1
                                                                      ELMT 71
      DO 610 J=1, NEL
     P(J1+3) = P(J1+3) + (SHP(1,J)*SIGB(1)+SHP(2,J)*SIGB(3)+SHP(3,J) ELMT 75
                                                                      ELMT 76
                          *SIGS(1))*DV
                                                                       ELMT 77
ELMT 78
     P(J1+4) = P(J1+4) + (SHP(2,J)*SIGB(2)+SHP(1,J)*SIGB(3)+SHP(3,J)
                     *SIGS(2))*DV
                                                                       ELIIT 79
  610 J1 = J1 + NDF
                                                                       ELMT 80
  600 CONTINUE
                                                                       FLMT 81
     RETURN
                                                                       ELMT 83
                                                                      ELMT 83
ELMT 84
 2001 FORMAT(1H1//
    9HSY-STRAIN/28X,8(6X,7H-STRESS)/)
                                                                       ELMT 89
 2002 FORMAT(I8,2F10.4,8E13.4/28X,8E13.4)
                                                                       ELMT 90
C
                                                                      PGAU 1
      SUBROUTINE PGAUSS(LL,LINT)
        GAUSSIAN POINTS AND WEIGHTS FOR TWO DIMENSIONS
                                                                      PGAU 2
C***
                                                                       PGAU
                                                                             3
      COMMON /GAUSSP/ SG(16), TG(16), WG(16)
      DIMENSION LR(9), LZ(9), LW(9), WR(2), GR(2), GC(2)
                                                                       PCAU 4
      DATA LR/-1, 1, 1, -1, 0, 1, 0, -1, 0/, LZ/-1, -1, 1, 1, -1, 0, 1, 0, 0/
                                                                       PGAU 5
                                                                       PCAU
      DATA LW/4%25,4%40,64/
      DATA GR/0.861136311594053,0.339981043584856/
                                                                       PGAU
                                                                       PGAU 8
      DATA GC/1.0,0.33333333333
                                                                       PGAU
                                                                            9
      DATA WR/0.347854845137454,0.G52145154862546/
                                                                       PGAU 10
      LINT = LL*LL
                                                                       PGAU 11
      L=IABS(LL)
                                                                       PGAU 12
      GO TO (1,2,3,4),L
                                                                       PGAU 13
        1X1 INTEGRATION
                                                                       PGAU 14
    1 SG(1) = 0.
                                                                       PGAU 15
      TG(1) = 0.
                                                                       PGAU 16
      WG(1) = 4.
                                                                       PGAU 17
     RETURN
                                                                       PGAU 18
C... 2X2 INTEGRATION
2 G = 1./SQRT(3.)
                                                                       PGAU 19
                                                                       PGAU 20
      IF(LL.LT.0) G=1.
                                                                       PCAU 21
      DO 21 I=1,4
                                                                       PGAU 22
      SG(I) = G*LR(I)
                                                                       PGAU 23
      TG(I) = G*LZ(I)
```

```
PGAU 24
   21 WG(I) = 1.
                                                                                 PGAU 25
      RETURN
                                                                                 PGAU 26
         3X3 INTEGRATION
                                                                                 PGAU 27
    3 G = SQRT(0.6)
                                                                                 PGAU 28
      IF(LL.LT.0) G=1.
                                                                                 PGAU 29
      H = 1./81.
                                                                                 PGAU 30
      DO 31 I=1,9
                                                                                 PGAU 31
      SG(I) = G*LR(I)
                                                                                 PGAU 32
      TG(I) = G*LZ(I)
                                                                                 PGAU 33
   31 WG(I) = H*LW(I)
                                                                                 PGAU 34
      RETURN
                                                                                 PGAU 35
         4X4 INTEGRATION
                                                                                 PGAU 36
    4 DO 41 I=1,4
                                                                                 PGAU 37
      I1 = 1 + MOD(I + 1, 2)
                                                                                 PGAU 38
      I2 = 1
                                                                                 PGAU 39
      IF(I.GT.2) I2 = 2
                                                                                 PGAU 40
      DO 41 J=1,4
                                                                                 PGAU 41
      JJ = (I-1)*4+J
      SG(JJ) = LR(J)*GR(I1)
                                                                                 PGAU 42
                                                                                 PGAU 43
      IF(LL.LT.0) SG(JJ) = LR(J)*GC(I1)
      TG(JJ) = LZ(J)*GR(I2)
                                                                                 PGAU 44
                                                                                 PGAU 45
      IF(LL.LT.0) TG(JJ) = LZ(J)*GC(I2)
                                                                                 PGAU 46
   41 WG(JJ) = WR(I1)*WR(I2)
                                                                                 PGAU 47
      RETURN
                                                                                 PGAU 48
      FNI
C
      SUBROUTINE SHAPE (SS, TT, X, SHP, XSJ, NDM, NEL, IX, FLG)
         SHAPE FUNCTION ROUTINE FOR TWO DIMENSIONAL ELEMENTS
                                                                                 SHAP
      LOGICAL FLG
                                                                                 SHAP
                                                                                        3
      DIMENSION SHP(3,4),X(NDM,1),S(4),T(4),XS(2,2),SX(2,2),IX(9)
                                                                                 SHAP
                                                                                        4
                                                                                 SHAP
      DATA S/-0.5, 0.5, 0.5, -0.5/, T/-0.5, -0.5, 0.5, 0.5/
                                                                                        5
         FORM 4-NODE QUADRILATERIAL SHAPE FUNCTIONS
                                                                                 SHAP
                                                                                        6
                                                                                 SHAP
      DO 100 I=1,4
                                                                                 SHAP
      SHP(3,I) = (0.5+S(I)*SS)*(0.5+T(I)*TT)
                                                                                        8
                                                                                 SHAP
                                                                                        9
      SHP(1,I) = S(I)*(0.5+T(I)*TT)
                                                                                 SHAP 10
  100 SHP(2,I) = T(I)*(0.5+S(I)*SS)
      IF(NEL.GE.4) GO TO 120
                                                                                 SHAP 11
                                                                                 SHAP 12
         FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
                                                                                 SHAP 13
      DO 110 I=1.3
                                                                                 SHAP 14
  110 SHP(I,3) = SHP(I,3)+SHP(I,4)
                                                                                 SHAP 15
          ADD QUADRATIC TERMS IF NECESSARY
 120 IF(NEL.GT.4 .AND. NEL.LT.10) CALL SHAP2(SS,TT,SHP,IX,NEL)

ADD CUBIC TERMS IF NECESSARY

IF(NEL.GT.9) CALL SHAP3(SS,TT,SHP,IX,NEL)
                                                                                 SHAP 16
                                                                                 SHAP 17
                                                                                 SHAP 18
                                                                                 SHAP 19
         CONSTRUCT JACOBIAN AND ITS INVERSE
                                                                                 SHAP 20
      DO 130 I=1,NDM
                                                                                 SHAP 21
      DO 130 J=1,2
                                                                                 SHAP 22
      XS(I,J) = 0.0
                                                                                 SHAP 23
      DO 130 K=1, NEL
  130 \times S(I,J) = \times S(I,J) + \times (J,K) \times SHP(I,K)
                                                                                 SHAP 24
      XSJ = XS(1,1) \times XS(2,2) - XS(1,2) \times XS(2,1)
                                                                                 SHAP 25
                                                                                 SHAP 26
      IF(XSJ .GT. 0.00000001) GO TO 135
                                                                                 SHAP 27
      WRITE(6,2000) IX
                                                                                 SHAP 28
      STOP
                                                                                 SHAP 29
  135 IF(FLG) RETURN
                                                                                 SHAP 30
      SX(1,1) = XS(2,2)/XSJ
SX(2,2) = XS(1,1)/XSJ
                                                                                 SHAP 31
                                                                                 SHAP 32
      SX(1,2) = -XS(1,2)/XSJ
                                                                                 SHAP 33
      SX(2,1) = -XS(2,1)/XSJ
                                                                                 SHAP 34
         FORM GLOBAL DERIVATIVES
                                                                                 SHAP 35
      DO 140 I=1, NEL
               = SHP(1,I)*SX(1,1)+SHP(2,I)*SX(2,1)
                                                                                 SHAP 36
                                                                                 SHAP 37
      SHP(2,I) = SHP(1,I)*SX(1,2)*SHP(2,I)*SX(2,2)
                                                                                 SHAP 38
  140 \text{ SHP}(1,I) = \text{TP}
                                                                                 SHAP 39
      RETURN
 2000 FORMAT(5X,67H**SHAPE ERROR 01** ZERO OR NEGATIVE JACOBIAN DET. FOR SHAP 40
                                                                                 SHAP 41
     ~ELEMENT NODES: /20X,12I4)
                                                                                 SHAP 42
С
                                                                                 SHAP 1
      SUBROUTINE SHAP2(S, T, SHP, IX, NEL)
```

C****	ADD QUADRATIC FUNCTIONS AS NECESSARY DIMENSION IX(9), SHP(3,12) S2 = (1S*S)/2. T2 = (1T*T)/2. D0 100 I=5, NEL D0 100 J=1,3	SHAP 2 SHAP 3 SHAP 5 SHAP 6 SHAP 7
100 C	SHP(J,I) = 0.0 MIDSIDE NODES (SERENDIPITY) IF(IX(5).EQ.0) GO TO 101 SHP(1,5) = -S*(1T) SHP(2,5) = -S2	SHAP 8 SHAP 9 SHAP 10 SHAP 11 SHAP 12
101	SHP(3,5) = S2*(1T) IF(NEL.LT.6) GO TO 107 IF(IX(6).EQ.0) GO TO 102 SHP(1,6) = T2 SHP(2,6) = -T*(1.+S)	SHAP 13 SHAP 14 SHAP 15 SHAP 16 SHAP 17
102	SHP(3,6) = T2*(1.+S) IF(NEL.LT.7) GO TO 107 IF(IX(7).EQ.0) GO TO 103 SHP(1,7) = -S*(1.+T) SHP(2,7) = S2	SHAP 18 SHAP 19 SHAP 20 SHAP 21 SHAP 22
103	SHP(3,7) = S2*(1.+T) IF(NEL.LT.8) GD TO 107 IF(IX(8).EQ.0) GD TO 104 SHP(1,8) = -T2 SHP(2,8) = -T*(1S)	5HAP 23 5HAP 24 5HAP 25 5HAP 25 5HAP 27
C 104	SHP(3,8) = T2*(1S)	SHAP 28 SHAP 29 SHAP 30 SHAP 31 SHAP 32 SHAP 33
c	SHP(3,9) = 4.*S2*T2	SHAP 34 SHAP 35 SHAP 36 SHAP 37
105	SHP(J,I) = SHP(J,I) - 0.25*SHP(J,9) DO 106 I=5,8	SHAP 38 SHAP 39
	IF(IX(I).NE.0) SHP(J,I) = SHP(J,I) -0.5*SHP(J,9)	SHAP 40 SHAP 41
C 107	K = 8	SHAP 42 SHAP 43
109	DO 109 I=1,4 L = I + 4 DO 108 J=1,3 SHP(J,I) = SHP(J,I) - 0.5*(SHP(J,K)+SHP(J,L)) K = L RETURN END	SHAP 44 SHAP 45 SHAP 46 SHAP 47 SHAP 48 SHAP 49
C***	DIMENSION IX(12),SHP(3,12) DO 100 I=5,NEL	SHAP 1 SHAP 2 SHAP 3 SHAP 4 SHAP 5
100	DO 100 J=1,3 SHP(J,I)=0.0 IF(IX(5).EG.0) GO TO 101 S1=-1./3.	SHAP 6 SHAP 7 SHAP 8 SHAP 9
101	T1=-1. CALL CSHAPE(S,T,S1,T1,SHP,1,5) IF(IX(6).EQ.0) GD TO 102 S1=1. T1=-1./3.	SHAP 10 SHAP 11 SHAP 12 SHAP 13
102	CALL CSHAPE(S,T,S1,T1,SHP,2,6) IF(IX(7).EQ.0) GO TO 103 S1=1./3. T1=1.	SHAP 14 SHAP 15 SHAP 16 SHAP 17
103	CALL CSHAPE(S,T,S1,T1,SHP,1,7) IF(IX(8).EQ.0) GO TO 104 S1=-1. T1=1./3.	SHAP 18 SHAP 19 SHAP 20 SHAP 21

```
SHAP 22
      CALL CSHAPE(S,T,S1,T1,SHP,2,8)
                                                                                 SHAP 23
  104 IF(IX(9).EQ.0) GO TO 105
                                                                                 SHAP 24
      S1=-1.
                                                                                 SHAP 25
      T1=-1。/3。
                                                                                 SHAP 26
      CALL CSHAPE(S,T,S1,T1,SHP,2,9)
                                                                                 SHAP 27
  105 IF(NEL.LT.10) GO TO 200
                                                                                 SHAP 28
      IF(IX(10).EQ.0) GO TO 106
                                                                                 SHAP 29
      S1=1./3.
                                                                                 SHAP 30
      T1=-1.
                                                                                 SHAP 31
SHAP 32
      CALL CSHAPE(S,T,S1,T1,SHP,1,10)
  106 IF(NEL.LT.11) CO TO 200
                                                                                 SHAP 33
      IF(IX(11).EQ.0) GO TO 107
                                                                                 SHAP 34
      S1=1.
                                                                                 SHAP 35
      T1=1./3.
                                                                                 SHAP 36
      CALL CSHAPE(S, T, S1, T1, SHP, 2, 11)
                                                                                 SHAP 37
  107 IF(NEL.LT.12) GO TO 200
      IF(IX(12).EQ.0) GO TO 200
                                                                                 SHAP 38
                                                                                 SHAP 39
      S1=-1./3.
                                                                                 SHAP 40
      T1=1.
                                                                                 SHAP 41
      CALL CSHAPE(S, T, S1, T1, SHP, 1, 12)
                                                                                 SHAP 42
         CORRECT CORNER NODES
                                                                                 SHAP 43
  200 DO 210 I=1,4
                                                                                 SHAP 44
      I1=I+4
                                                                                 SHAP 45
      15=1+8
                                                                                 SHAP 46
      IF(I.EQ.1) I3=I+7
                                                                                 SHAP 47
      IF(I.GT.1) I3=I+3
                                                                                 SHAP 48
      IF(I.LT.4) I4=I+9
IF(I.EQ.4) I4=I+5
                                                                                 SHAP 49
                                                                                 SHAP 50
      DO 210 J=1,3
                                                                                 SHAP 51
  210 SHP(J,I)=SHP(J,I)-2./3.*(SHP(J,I1)+SHP(J,I2))-1./3.*(SHP(J,I3)
                                                                                 SHAP 52
         +SHP(J, I4))
                                                                                 SHAP 53
      RETURN
                                                                                 SHAP 54
      END
C
                                                                                 CSHA
      SUBROUTINE CSHAPE(S, T, S1, T1, SHP, K, L)
                                                                                       1
          SUPPLEMENTAL ROUTINE FOR THE SHAPE FUNCTIONS
                                                                                 CSHA
                                                                                        5
<u>[****</u>
                                                                                 CSHA
                                                                                        3
      DIMENSION SHP(3,12)
                                                                                 CSHA
                                                                                        4
      C=9./32.
                                                                                 CSHA
                                                                                        5
      GO TO (1,2),K
                                                                                 CSHA
    1 SHP(1,L)=C*(1.+T1*T)*(9.*S1-2.*S-27.*S1*S*S)
                                                                                        6
                                                                                 CSHA
      SHP(2,L)=C*T1*(1.-S*S)*(1.+9.*S1*S)
      SHP(3,L)=C*(1.+T1*T)*(1.-S*S)*(1.+9.*S1*S)
                                                                                 CSHA
                                                                                        8
                                                                                 CSHA
                                                                                        9
      RETURN
    2 SHP(1,L)=C*S1*(1.-T*T)*(1.+9.*T1*T)
                                                                                 CSHA 10
      SHP(2,L)=C*(1.+S1*S)*(9.*T1-2.*T-27.*T1*T*T)
                                                                                 CSHA 11
                                                                                 CSHA 12
      SHP(3,L)=C*(1.+S1*S)*(1.-T*T)*(1.+9.*T1*T)
                                                                                 CSHA 13
      RETURN
                                                                                 CSHA 14
С
      SUBROUTINE PMESH(IDL, XL, IX, ID, X, F, JDIAG, NDF, NDM, NEN, NKM)
                                                                                 PMES
                                                                                 PMES
                                                                                        5
          INPUT MESH DATA
      LOGICAL PRT, ERR, PCOMP
                                                                                 PMES
                                                                                        3
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR COMMON /MTDATA/ RHO, VU12, E1, E2, G12, G13, G23, THK, WIDTH
                                                                                 PMES
                                                                                 PMES
                                                                                        5
      COMMON /LABELS/ PDIS(6),A(6),BC(2),DI(6),CD(3),FD(3)
                                                                                 PMES
                                                                                        6
      COMMON /EXDATA/ QLAW(4)
COMMON /RODATA/ VR,IQ,NDS
                                                                                 PMES
                                                                                 PMES
                                                                                        8
      DIMENSION IDL(6), XL(7), IX(NEN, 1), ID(NDF, 1), X(NDM, 1),
                                                                                 PMES
                                                                                        9
                 F(NDF,1), DUM(1), WD(13), JDIAG(1)
                                                                                 PMES 10
      DATA WD/4HCOOR, 4HELEM, 4HMATE, 4HBOUN, 4HFORC, 4HROD,
                                                                                 PMES 11
                                                                                 PMES 12
              4HEND ,4HPRIN,4HNOPR,4HPAGE,4HEXPE/
      DATA BL/4HBLAN/, LIST/11/, PRT/. TRUE./
                                                                                 PMES 13
                                                                                 PMES 14
         INITIALIZE ARRAYS
      ERR = .FALSE.
                                                                                 PMES 15
                                                                                 PMES 16
      DO 501 I=1,4
                                                                                 PMES 17
  501 QLAW(I)=0.
      DO 502 N=1, NUMNP
                                                                                 PMES 18
      DO 502 I=1,NDF
                                                                                 PMES 19
                                                                                 PMES 20
      ID(I,N)=0
                                                                                 PMES 21
      F(I,N)=0.
```

		PMES 22
_	CONTINUE	PMES 23
C	READ A CARD AND COMPARE WITH MACRO LIST READ(5,1000) CC	PMES 24
10	DO 20 I=1,LIST	PMES 25
20	IF(PCOMP(CC,WD(I))) GO TO 30	PMES 26
	GO TO 10	PMES 27 PMES 28
	GO TO (1,2,3,4,5,6,7,8,9,11,12),I NODAL COORDINATE DATA INPUT	PMES 29
C	DO 102 N=1, NUMNP	PMES 30
	X(1,N)= BL	PMES 31
	CALL GENUEC(NDM, XL, X, CD, PRT, ERR)	PMES 32 PMES 33
	GO TO 10	PMES 34
C,	ELEMENT DATA INPUT L=0	PMES 35
C	DO 206 I=1, NUMEL, 50	PMES 38
	IF(PRT) WRITE(6,2001) O, HEAD, (K, K=1, NEN)	PMES 37
	J = MINO(NUMEL, I+49)	PMES 38 PMES 39
	DO 206 N=1,J IF(L-N) 200,202,203	PMES 40
200	READ(5, 1001) L, (IDL(K), K=1, NEN), LX	PMES 41
200	IF(L.EQ.0) L=NUMEL+1	PMES 42
	IF(LX.EQ.0) LX=1	PMES 43 PMES 44
504	IF(L-N) 201,202,203	PMES 45
501	WRITE(6,3001) L,N ERR = .TRUE.	PMES 45
	GD TD 206	PMES 47
505	NX = LX	PMES 48 PMES 49
007	DD 207 K=1, NEN	PMES 50
507	IX(K,L) = IDL(K) GO TO 205	PMES 51
203	IX(NEN,N) = IX(NEN,N-1)	PMES 52
	DO 204 K=1, NEN	PMES 53 PMES 54
204	IX(K,N) = IX(K,N-1) + NX IF(IX(K,N-1),EQ.0) IX(K,N) = 0	PMES 55
204	IF (IX(K, N-1), Ed. 0) IX(K, N) = 0 IF (PRT) WRITE (6, 2002) N, (IX(K, N), K=1, NEN)	PMES 58
508	CONTINUE	PMES 57
	GO TO 10	PMES 58 PMES 59
C	MATERIAL DATA INPUT	PMES 60
3	WRITE(6,2004) O,HEAD CALL MATLIB	PMES G1
	CO TO 10	PMES 62
C	READ IN THE RESTRAINT CONDITIONS FOR EACH NODE	PMES 63 PMES 64
4	IF(PRT) WRITE(6,2000) O, HEAD, (I, BC, I=1, NDF)	PMES 65
	N = 0 $NG = 0$	PMES 66
420	L = N	PMES 67
	LG = NG	PMES 68 PMES 69
	READ(5, 1001) N, NG, IDL	PMES 70
	IF(N.LE.0 .OR. N.GT.NUMNP) GO TO 50 DO 41 I=1,NDF	PMES 71
	IN(I,N) - IN(I)	PMES 72
41	IF(L.NE.O .AND. IDL(I).EQ.O .AND. ID(I,L).LT.O) ID(I,N)=-1	PMES 73 PMES 74
47	LG = ISIGN(LG, N-L)	PMES 75
42	L = L+LG IF((N-L)*LG .LE. 0) GD TO 420	PMES 76
	NO 43 I=1.NDF	PMES 77
43	IF(ID(I,L-LG) LT. 0) ID(I,L) = -1	PMES 78 PMES 79
	GO TO 42	PMES 80
50	DO 48 N=1,NUMNP DO 46 I=1,NDF	PMES 81
46	IF(ID(I,N) .NE. 0) GO TO 47	PMES 82
	G9 TO 48	PMES 83 PMES 84
	IF(PRT) WRITE(6,2007) N, (ID(I,N), I=1, NDF)	PMES 85
48	CONTINUE GO TO 10	PMES 88
c	FORCE/DISPL DATA INPUT	PMES 87
5	CALL GENUEC(NDF, XL, F, FD, PRT, ERR)	PMES 88 PMES 89
	GO TO 10	PMES 90
C	END OF MESH DATA INPUT COMPUTE THE PROFILE OF GLOBLE ARRAYS	PMES 91

```
PMES 92
    7 IF(ERR) STOP
      CALL PROFIL (JDIAG, ID, IX, NDF, NEN, NKM, PRT)
                                                                                   PMES 93
                                                                                   PMES 94
      RETURN
                                                                                   PMES 95
         PRINT OPTION
   8 PRT = .TRUE.
GO TO 10
                                                                                   PMES 96
                                                                                   PMES 97
                                                                                   PMES 98
         NOPRINT OPTION
                                                                                   PMES 99
    9 PRT = .FALSE.
                                                                                   PMES100
      GO TO 10
                                                                                   PMES101
         READ IN PAPER EJECTION OPTION
                                                                                   PMES102
   11 READ(5,1000) D
                                                                                   PMES103
      GO TO 10
          INPUT EXPERIMENTAL INDENTATION LAW
                                                                                   PMES104
                                                                                   PMES105
   12 READ(5,1007) (QLAW(I), I=1,4)
                                                                                   PMES106
      WRITE(6,2008) O, HEAD, (QLAW(I), I=1,4)
                                                                                    PMES107
      GO TO 10
                                                                                    PMES108
          INPUT INITIAL IMPACT CONDITION
                                                                                    PMES109
    6 WRITE(6,2009) O, HEAD
                                                                                    PMES110
      READ(5,1002) NO, INDF, UR
                                                                                    PMES111
      WRITE(6,2010) NO, INDF, VR
                                                                                    PMES112
      F(INDF,NQ)=1.0
                                                                                    PMES113
      IQ=ID(INDF,NQ)
                                                                                    PMES114
      GO TO 10
                                                                                    PMES115
          INPUT/OUTPUT FORMATS
                                                                                    PMES116
 1000 FORMAT(A4,75X,A1)
                                                                                    PMES117
 1001 FORMAT(16I5)
                                                                                    PMES118
 1002 FORMAT(215,F10.0)
                                                                                    PMES119
 1007 FORMAT(4F10.0)
 2000 FORMAT(A1,20A4//5X,10HNODAL B.C.,7X//6X,5HNODE ,9(I7,A4,A2)/1X)
                                                                                    PMES120
 2001 FORMAT(A1, 20A4//5X, 8HELEMENTS//3X, 7HELEMENT,
                                                                                    PMES121
                                                                                    PMES122
              14(I3,5H NODE)/(20X,14(I3,5H NODE)))
                                                                                    PMES123
 2002 FORMAT(110,1418/(10X,1418))
                                                                                    PMES124
 2004 FORMAT(A1,20A4//5X,19HMATERIAL PROPERTIES)
                                                                                    PMES125
 2007 FORMAT(I10,9113)
 2008 FORMAT(A1,20A4//5X,≠EXPERIMENTAL INDENTATION LAW≠//
                                                                                    PMES126
         10X,≠CONTACT COEFFICIENT: ≠,E12.4/
10X,≠CRITICAL INDENTATION: ≠ E12.4/
10X,≠CONSTANT S: ≠ E12.4/
                                                                                    PMES127
     1
                                                                                    PMES128
                                                                                    PMES129
 4 10%,≠POWER INDEX OF UNLOADING LAW:≠ F12.3)
3001 FORMAT(5%,26H**PMESH ERROR 01** ELEMENT,15,
                                                                                    PMES130
                                                                                    PMES131
                                                                                    PMES132
         22H AFPEARS AFTER ELEMENT, 15)
 2009 FORMAT(A1,20A4, //5X, ≠IMPACT OF LAMINATED PLATE ≠)
2010 FORMAT(//10X, ≠IMPACT NODAL POINT: ≠, I10/
10X, ≠IMPACT D.O.F.: ≠, I10/
                                                                                    PMES133
                                                                                    PMES134
                                                                                    PMES135
                 10X,≠INITIAL IMPACT VELOCITY:≠, E12.4)
                                                                                    PMES136
                                                                                    PMES137
       END
С
                                                                                    GENU
       SUBROUTINE GENUEC(NDM, XL, X, CD, PRT, ERR)
       GENERATE REAL DATA ARRAYS BY LINEAR INTERPOLATION LOGICAL PRI, ERR, PCOMP
                                                                                    GENU
Cxxxx
                                                                                    GENU
                                                                                    GENU
       COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
                                                                                    GENU
       DIMENSION X(NDM,1),XL(7),CD(3)
                                                                                    GENU
       DATA BL/4HBLAN/
                                                                                    GENU
       N=0
                                                                                    GENU
       NG=0
                                                                                    GENU
                                                                                           9
  102 L=N
                                                                                    GENU 10
       I C=NC
                                                                                    GENU 11
       READ(5,1000) N,NG,XL
                                                                                    GENU 12
       IF(N.LE.O .OR. N.GT.NUMNP) GO TO 108
                                                                                    GENU 13
  DD 103 I=1,NDM
103 X(I,N)=XL(I)
                                                                                    GENU 14
                                                                                    GENU 15
       IF(LG) 104,102,104
                                                                                    GENU 16
  104 LG=ISIGN(LG, N-L)
                                                                                    GENU 17
       LI=(IABS(N-L+LG)-1)/IABS(LG)
                                                                                    GENU 18
       DO 105 I=1,NDM
                                                                                    GENU 19
  105 XL(I)=(X(I,N)-X(I,L))/LI
                                                                                    GENU 20
  106 L=L+LG
                                                                                    GENU 21
       IF((N-L)*LG .LE. 0) GO TO 102
                                                                                    GENU 22
       IF(L.LE.O .OR. L.GT.NUMNP) GO TO 110
                                                                                    GENU 23
       DO 107 I=1, NDM
```

```
GENU 24
  107 X(I,L)=X(I,L-LG)+XL(I)
                                                                                    GENU 25
      GO TO 106
                                                                                    GENU 26
  110 WRITE(6,3000) L,(CD(I), I=1,3)
                                                                                    GENU 27
      ERR = .TRUE.
                                                                                    GENU 28
      GO TO 102
                                                                                    GENU 29
  108 DO 109 I=1, NUMNP, 50
      IF(PRT) WRITE(6,2000)O, HEAD, (CD(L), L=1,3), (L, CD(1), CD(2), L=1, NDM) GENU 30
                                                                                    CENU 31
      N = MINO(NUMNP_{2}I+49)
                                                                                    GENU 32
      DO 109 J=I,N
                                                                                    GENU 33
      IF(PCOMP(X(1,J),BL) .AND. PRT) WRITE(6,2008) N
  109 IF(.NOT.PCOMP(X(1,J),BL).AND.PRT) WRITE(6,2009) J,(X(L,J),L=1,NDM) GENU 34
                                                                                    GENU 35
      RETURN
                                                                                    GENU 36
 1000 FORMAT(215,7F10.0)
 2000 FORMAT(A1,20A4//5X, 5HNODAL,3A4//6X,4HNODE,9(17,A4,A2))
                                                                                    GENU 37
                                                                                    GENU 38
GENU 39
 2008 FORMAT(5X,21H**GENUEC WARNING 01**, I10,
          32H HAS NOT BEEN INPUT OR GENERATED)
                                                                                    GENU 40
 2009 FORMAT(I10,9F13.4)
 3000 FORMAT(5X,44H**GENUEC ERROR 01**ATTEMPT TO GENETATE NODE, I5,
                                                                                    GENU 41
                                                                                    GENU 42
     1 3H IN,3A4)
                                                                                    GENU 43
C
                                                                                    PROF
      SUBROUTINE PROFIL (JDIAG, ID, IX, NDF, NEN, NKM, PRT)
                                                                                    PROF
         COMPUTE PROFILE OF GLOBAL ARRAYS
በ<del>ተ</del>ጽሞች
                                                                                    PROF
                                                                                           3
      LOGICAL PRT
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEG, IPR DIMENSION JDIAG(1), ID(NDF, 1), IX(NEN, 1), EQ(2)
                                                                                    PROF
                                                                                    PROF
                                                                                           5
                                                                                    PROF
                                                                                           6
      DATA EQ/4H DOF,2H. /
                                                                                    PROF
                                                                                           7
        SET UP THE EQUATION NUMBERS
                                                                                    PROF
      NF\Omega = 0
                                                                                    PROF
                                                                                           9
       DO 50 N=1, NUMNP
                                                                                    PROF 10
      DO 40 I=1, NDF
                                                                                    PROF 11
       J = ID(I,N)
                                                                                    PROF 12
PROF 13
       IF(J) 30,20,30
   20 \text{ NEQ} = \text{NEQ} + 1
                                                                                    PROF 14
      ID(I,N) = NEQ
                                                                                    PROF 15
       JDIAG(NEQ) = 0
                                                                                    PROF 16
PROF 17
       GO TO 40
   30 \text{ ID}(I.N) = 0
                                                                                    PROF 18
   40 CONTINUE
                                                                                    PROF 19
PROF 20
   50 CONTINUE
       IF(.NOT.PRT) GO TO 70
                                                                                    PROF 21
      WRITE(6,2000) O, HEAD, (I, EQ, I=1, NDF)
                                                                                    PROF 22
   DO 60 I=1, NUMNP
60 WRITE(6, 2001) I, (ID(K, I), K=1, NDF)
                                                                                    PROF 23
PROF 24
PROF 25
         COMPUTE COLUMN HEIGHTS
   70 DO 500 N=1, NUMEL
                                                                                    PROF 26
PROF 27
       DO 400 I=1, NEN
       II = IX(I,N)
                                                                                    PROF 28
       IF(II .EQ. 0) GO TO 400
                                                                                    PROF 29
      DO 300 K=1,NDF
                                                                                    PROF 30
PROF 31
                                                                                          30
       KK = ID(K,II)
       IF(KK.EQ.0) GO TO 300
                                                                                    PROF 32
      DD = IX(J,N)
                                                                                    PROF 33
                                                                                    PROF 34
       IF(JJ.EQ.0) GO TO 200
                                                                                    PROF 35
       DO 100 L=1,NDF
                                                                                    PROF 36
PROF 37
PROF 38
      LL = ID(L,JJ)
       IF(LL.EQ.0) GO TO 100
       M = MAXO(KK, LL)
                                                                                    PROF 39
       JDIAG(M) = MAXO(JDIAG(M), IABS(KK-LL))
                                                                                    PROF 40
PROF 41
PROF 42
  100 CONTINUE
  200 CONTINUE
  300 CONTINUE
                                                                                    PROF 43
PROF 44
  400 CONTINUE
  500 CONTINUE
                                                                                    PROF 45
          COMPUTE DIAGONAL POINTERS FOR PROFILE
                                                                                    PROF 46
       NKM = 1
                                                                                    PROF 47
       JDIAG(1) = 1
                                                                                    PROF 48
       IF(NEQ.EQ.1) RETURN
                                                                                    PROF 49
       DO 600 N=2, NEQ
```

```
PROF 50
 600 \text{ JDIAG(N)} = \text{JDIAG(N)} + \text{JDIAG(N-1)} + 1
                                                                              PROF 51
      NKM = JDIAG(NEQ)
 2000 FORMAT(A1,20A4//5X,16HEQUATION NUMBERS//6X,5HNODE,
                                                                              PROF 52
                                                                              PROF 53
         9(I5,A4,A2)/1X)
                                                                              PROF 54
 2001 FORMAT(I10,9I11)
                                                                              PROF 55
      RETURN
                                                                              PROF 56
      END
С
                                                                              MATL 1
      SUBROUTINE MATLIB
         MATERIAL PROPERTIES ROUTINE
                                                                              MATL
Cassa
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
                                                                              MATL
                                                                                     3
      COMMON /MTDATA/ RHO, VU12, E1, E2, G12, G13, G23, THK, WIDTH
                                                                              MATL
      COMMON /COMPST/ ABD(6,6),DS(2,2),QBR(3,3,25),QBS(2,2,25),
                                                                              MATL
                        TH(25), ZK(25)
                                                                              MATL
                                                                              MATL
      COMMON /DMATIX/ D(10), DB(6,6), LINT
                                                                              MATL
      DIMENSION WD(5)
      DATA WD/6H ISO-,6H ORTHO,6HTROPIC,6H COMP,6HOSITE /
                                                                              MATL
                                                                              MATL 10
         INPUT MATERIAL PROPERTIES
      READ(5,1000) L1,L2,K,THK,WIDTH
                                                                              MATL 11
                                                                              MATL 12
      READ(5,1001) RHO, VU12, E1, E2, G12, G13, G23
                                                                              MATL 13
      DO 150 J=1,3
DO 150 I=1,3
                                                                              MATL 14
                                                                              MATL 15
      IF(I.EQ.3 .OR. J.EQ.3) GO TO 150
                                                                              MATL 16
      DS(J,I) = 0.
                                                                              MATL 17
  150 ABD(J,I) = ABD(J+3,I) = ABD(J,I+3) = ABD(J+3,I+3) = 0.
                                                                              MATL 18
      L1 = MINO(4,MAXO(1,L1))
                                                                              MATL 19
      B(1) = L1
                                                                              MATL 20
      L2 = MINO(4, MAXO(1, L2))
                                                                              MATL 21
      D(2) = L2
                                                                              MATL 22
      D(3) = K
                                                                              MATL 23
      LINT=0
                                                                              MATL 24
      IF(E1-E2) 120,110,120
                                                                              MATL 25
  110 G12=E1/(2.*(1.+VU12))
                                                                              MATL 26
      J1=1 $ J2=3
                                                                              MATL 27
       GO TO 200
                                                                              MATL 28
  120 J1=4 $ J2=5
                                                                              MATL 29
       IF(LAYER.EQ.1) J1=2 $ J2=3
  200 WRITE(6,2000) LAYER, WD(J1), WD(J2), THK, E1, E2, G12, G13, G23, VU12,
                                                                              MATL 30
                                                                              MATL 31
MATL 32
                     RHO, L1, L2, K
      CALL CMPD
                                                                              MATL 33
      RETURN
                                                                              MATL 34
         FORMAT FOR INPUT-OUTPUT
                                                                              MATL 35
 1000 FORMAT(3I5,2F10.0)
                                                                              MATL 36
 1001 FORMAT(7F10.0)
                                                                              MATL 37
 2000 FORMAT(/5X,12,12H LAYER(S) OF, 2AG, 21H PLATE WITH THICKNESS,
     1 F10.4//10X, 15HYOUNG#S MODULUS, 10X, #E1=#, E10.4, 10X, #E2=#, E10.4/
                                                                              MATL 38
     2 10X,15HSHEAR MODULUS,9X,≠G12=≠,E10.4,9X,≠G13=≠,E10.4,9X,
                                                                              MATL 39
     3 ≠G23=≠,E10.4/10X,15HPOISSON RATIO,8X,≠VU12=≠,F5.3/10X,
                                                                              MATL 40
     4 7HDENSITY, 17X, ≠RHO=≠, E10.4/10X, 13HGAUSS PTS/DIR, 12X, ≠L1=≠, I5,
                                                                              MATL 41
                                                                              MATL 42
     5 5X, ≠L2=≠, I5/10X, 12HSTRESS POINT, 14X, ≠K=≠, I5/)
                                                                              MATL 43
       FND
С
                                                                               CMPD
      SUBROUTINE CMPD
COMPUTE ≠ABD≠ MATRIX AND ≠DS≠ MATRIX
                                                                               CMPD
                                                                                     2
[****
       COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
                                                                               CMPD
                                                                                     3
       COMMON /MTDATA/ RHO, VU12, E1, E2, G12, G13, G23, THK, WIDTH
                                                                               CMPD
                                                                                     4
                                                                               CMPD
      COMMON /COMPST/ ABD(6,6),DS(2,2),OBR(3,3,25),OBS(2,2,25),
                                                                                     5
                                                                               CMPD
                                                                                     6
                         TH(25), ZK(25)
                                                                               CMPD
      DIMENSION Q(3,3),QS(2,2),TK(25)
                                                                               CMPD
                                                                                     8
       LL=LAYER
                                                                               CMPD
       1117=LL+1
                                                                               CMPD 10
       READ(5,1000) (L,TH(L),TK(L),I=1,LL)
                                                                               CMPD 11
       ZK(1)=TTK=0.0
                                                                               CMPD 12
       DO 15 I=1,LL
                                                                               CMPD 13
       TTK=TTK+TK(I)
                                                                               CMPD 14
       ZK(I+1)=TK(I)+ZK(I)
                                                                               CMPD 15
   15 CONTINUE
                                                                               CMPD 16
       DO 25 I=1,MM
                                                                               CMPD 17
       ZK(I)=ZK(I)-TTK/2.
                                                                               CMPD 18
   25 CONTINUE
```

```
CMPD 19
     DEL=4.*ATAN(1.)/180.
                                                                             CMPD 20
     DEN = 1. - E2*VU12**2/E1
                                                                             CWPD 21
     Q(1,1) = E1/DEN
                                                                             CMPD 22
     G(5,2) = E5 \setminus DEN
                                                                             CMPD 23
      Q(1,2) = Q(2,1) = VU12*Q(2,2)
                                                                             CMPD 24
      Q(3,3) = G12
                                                                             CMPD 25
     Q(1,3) = Q(2,3) = Q(3,1) = Q(3,2) = 0.0
                                                                             CMPD 85
      QS(1,1) = G13
                                                                             CMPD 27
      QS(2,2) = G23
                                                                             CMPD 28
      QS(1,2) = QS(2,1) = 0.0
                                                                             CMPD 20
     DO 40 I=1,LL
                                                                             CMPD 30
      ANGL=TH(I)*DEL
                                                                             CMPD 31
      C=COS(ANGL)
                                                                             CMPB 32
      W=SIN(ANGL)
     QBR(1,1,I)=Q(1,1)*C**4+2.*(Q(1,2)+2.*Q(3,3))*(C*W)**2+Q(2,2)*W**4 CMPD 33
     OBR(1,2,1)=OBR(2,1,1)=(O(1,1)+O(2,2)-4.*Q(3,3))*(C*W)**2
                                                                             CMPD 34
                                                                             CMPD 35
                 +Q(1,2)#(W##4 +C##4 )
     QBR(2,2,1)=Q(1,1)*W**4+2.*(Q(1,2)+2.*Q(3,3))*(C*W)**2+Q(2,2)*C**4 CMPD 35
     OBR(1,3,1)=GER(3,1,1)=(G(1,1)-G(1,2)-2.*G(3,3))*W*C**3 +
                                                                             CMPD 37
                                                                            CMPD 39
CMPD 39
                 (Q(1,2)-Q(2,2)+2.*Q(3,3))*C*W**3
     $5
     CMPD 40
                (Q(1,2)-Q(2,2)+2.*Q(3,3))*W*C**3
     QBR(3,3,I)=(Q(1,1)+Q(2,2)-2.*Q(1,2)-2.*Q(3,3))*(W*C)**2+
                                                                            CMPD 41
     GBS(1,1,I) = GS(1,1)*C**2 + GS(2,2)*W**2

OBS(2,2,I) = GS(1,1)*W**2 + GS(2,2)*C**2

GBS(1,2,I) = GBS(2,1,I)
                                                                             CMPI 42
                                                                             CMPD 43
                                                                             CMPD 44
                                                                             CMPD 45
      QBS(1,2,I) = QBS(2,1,I) = (QS(1,1)-QS(2,2))*C*W
                                                                             CMPD 46
   40 CONTINUE
                                                                             CMPD 47
      DO 50 J=1,3
                                                                             CMPD 48
      DO 50 K=1,3
                                                                             CMPD 49
      DO 50 I=1,LL
      ABD(J ,K )= ABD(J ,K )+QBR(J,K,I)*(ZK(I+1)-ZK(I))
ABD(J+3,K )= ABD(J ,K+3)= ABD(J+3,K)+QBR(J,K,I)*
                                                                             CMPB 50
                                                                             CMPD 51
                                                                             CMPD 52
                   (ZK(I+1)**2-ZK(I)**2)/2.
                                                                             CMPD 53
      ABD(J+3,K+3)= ABD(J+3,K+3)+QBR(J,K,I)*(ZK(I+1)**3-ZK(I)**3)/3.
                                                                             CMPD 54
   50 CONTINUE
                                                                             CMPD 55
      DO 55 I=1,6
                                                                             CMPD 58
      DO 55 J=1,6
  IF(I.GE.3 .OR. J.GE.3) GO TO 55
IF(ABS(DS(I,J)) .LT. 1.E-06) DS(I,J)=0.0
55 IF(ABS(ABD(I,J)) .LT. 1.E-06) ABD(I,J)=0.0
                                                                             CMPD 57
                                                                             CMPD 58
                                                                             CMPD 59
                                                                             CMPD 60
      WRITE(6,2001) ((ABD(I,J),J=1,6),I=1,6)
                                                                             CMPD 61
      DO 60 J=1,2
                                                                             CWbD es
      DO 60 K=1,2
                                                                             CMPD 63
      DO 60 I=1,LL
   60 DS(J,K) = DS(J,K) + QBS(J,K,I)*(ZK(I+1)-ZK(I))
                                                                             CMPD 64
                                                                             CMPD 65
      WRITE(6,2002) ((DS(I,J),J=1,2),I=1,2)
                                                                             CMPD 66
 1000 FORMAT(15,F5.0,F10.0)
1000 FORMAT((15,F5.0,F10.0)
2001 FORMAT(//,1X,10HABD MATRIX//6(2X,6E13.4/))
                                                                             CMPD 67
                                                                             CMPD 68
 2002 FORMAT(/,1X,9HDS MATRIX//2(2X,2E13.4/))
                                                                             CMPD 69
      RETURN
                                                                             CMPD 70
      END
C
                                                                             KMLI
      SUBROUTINE KMLIB
                                                                             KMLI
         ASSEMBLE GLOBLE ARRAY
Cassa
                                                                             KMLI
      COMMON G(1)
                                                                             KMLI
      DIMENSION M(1)
                                                                             KMLI
      EQUIVALENCE (G(1),M(1))
                                                                                    6
                                                                             KMLI
      COMMON /ISWIDX/ ISW
      COMMON /CTDATA/ O, HEAD(20), NUMNP, NUMEL, LAYER, NEG, IPR
                                                                             KMLI
                                                                             KMLI
      COMMON /LODATA/ NDF, NDM, NEN, NST, NKM
                                                                             KMLI
                                                                                    9
      COMMON /PARATS/ NPAR(14), NEND
                                                                             KMLI 10
      N1=NEND
                                                                             KMLI 11
      N2=N1+NST*NST*IPR
                                                                             KHLI 12
      IF(ISW.LE.2) NE=N2+NKM*IPR
                                                                             KMLI 13
      IF(ISW.GT.2) NE=N2+NEO*IPR
                                                                             KMLI 14
      CALL SETMEM(NE)
                                                                             KMLI 15
      CALL PZERO(G(NEND), NE-NEND)
      CALL MASSO1(G(NPAR(1)),G(NPAR(2)),M(NPAR(3)),G(NPAR(4)),
                                                                             KMLI 16
         M(NPAR(5)), M(NPAR(6)), G(NPAR(7)), G(NPAR(8)), M(NPAR(9)),
                                                                             KMLI 17
```

```
KMLI 18
         G(NPAR(11)),G(N1),G(N2),NDF,NDM,NEN,NST,NKM)
                                                                               KMLI 19
      RETURN
                                                                               KMLI 20
C
      SUBROUTINE MASSO1(UL, XL, LD, P, IX, ID, X, F, JDIAG, B, S, A, NDF, NDM, NEN,
                                                                               MASS
                                                                               MASS
     NST, NKM)
                                                                               MASS
         FORM MASS MATRIX
C****
      COMMON /CTDATA/ 0, HEAD(20), NUMNP, NUMEL, LAYER, NEQ, IPR
                                                                               MASS
      COMMON /MTDATA/ RHO, VU12, E1, E2, G12, G13, G23, THK, WIDTH
                                                                               MASS
                                                                               MASS
      COMMON /DMATIX/ D(10), DB(6,6), LINT
      COMMON /ELDATA/ N,NEL,MCT
COMMON /ISWIDX/ ISW
COMMON /GAUSSP/ SG(16),TG(16),WG(16)
                                                                               MASS
                                                                               MASS
                                                                                      8
                                                                               MASS
      DIMENSION UL(1), XL(NDM, 1), LD(NDF, 1), P(1), IX(NEN, 1), ID(NDF, 1),
                                                                               MASS 10
     1 X(NDM,1),F(1),JDIAG(1),B(1),S(NST,1),A(1),SHP(3,12)
                                                                               MASS 11
                                                                               MASS 12
         LOOP ON ELEMENTS
                                                                               MASS 13
      DO 110 N=1, NUMEL
      DO 10 I=1,NST
DO 10 J=1,NST
                                                                               MASS 14
                                                                                MASS 15
                                                                               MASS 16
   10 S(I,J)=0.
                                                                               MASS 17
       SET UP LOCAL ARRAYS
                                                                               MASS 18
MASS 19
     CALL PFORM(UL, XL, LD, IX, ID, X, F, B, NDF, NDM, NEN, ISW)
      COMPUTE CONSISTENT MASS MATRIX
L = D(1)
                                                                               MASS 20
                                                                               MASS 21
      CALL PGAUSS(L,LINT)
                                                                                MASS 22
      DO 500 L=1,LINT
                                                                               MASS 23
        COMPUTE SHAPE FUNCTIONS
      CALL SHAPE(SG(L), TG(L), XL, SHP, XSJ, NDM, NEL, IX, .FALSE.)
                                                                               MASS 24
                                                                               MASS 25
      DV = WG(L)*XSJ*RHO*THK
                                                                               MASS 26
        FOR EACH NODE J COMPUTE DB=RHO*SHAPE*DV
C
                                                                               MASS 27
      K1 = 1
      DO 500 J=1, NEL
                                                                                MASS 29
       W11 = SHP(3,J)*DV
                                                                                MASS 30
      W33 = W11*THK**2/12.
                                                                               MASS 31
MASS 32
        FOR EACH NODE K COMPUTE MASS MATRIX (UPPER TRIANGULAR PART)
       J1 = K1
                                                                                MASS 33
       DO 510 K=J, NEL
       S(J1 ,K1 ) = S(J1 ,K1 ) + SHP(3,K)*W11
                                                                                MASS 34
                                                                                MASS 35
MASS 36
       S(J1+3,K1+3) = S(J1+3,K1+3) + SHP(3,K)*W33
  510 J1 = J1 + NDF
  500 K1 = K1 + NDF
.. COMPUTE MISSING PARTS AND LOWER PART BY SYMMETRY
                                                                                MASS 37
                                                                               MASS 38
MASS 39
       NSL = NEL*NDF
                                                                               MASS 40
       DO 530 K=1,NSL,NDF
                                                                               MASS 41
       DO 520 J=K, NSL, NDF
                                                                                MASS 42
       S(J+2,K+2) = S(J+1,K+1) = S(J ,K )
                                                                                MASS 43
       S(J+4,K+4) = S(J+3,K+3)
                                                                                MASS 44
       S(K,J) = S(J,K)
                                                                                MASS 45
       S(K+3,J+3) = S(J+3,K+3)
                                                                                MASS 46
       S(K+2,J+2) = S(K+1,J+1) = S(J,K)
                                                                                MASS 47
   520 S(K+4,J+4) = S(J+3,K+3)
                                                                                MASS 48
   530 CONTINUE
                                                                                MASS 49
      IF(ISW.EQ.2) GO TO 100
                                                                                MASS 50
         LUMPED MASS MATRIX
                                                                                MASS 51
       SUM1 = 0.0
                                                                                MASS 52
       SUM2 = 0.0
                                                                                MASS 53
       SUMD1 = 0.0
                                                                                MASS 54
MASS 55
       SUMD2 = 0.0
       DO 540 I=1, NSL, NDF
                                                                                MASS 56
       SUMD1 = SUMD1 + S(I,I)
                                                                                MASS 57
       SUMD2 = SUMD2 + S(1+3, I+3)
                                                                                MASS 58
MASS 59
       DO 540 J=1, NSL, NDF
  SUM1 = SUM1 + S(I,J)
540 SUM2 = SUM2 + S(I+3,J+3)
                                                                                MASS 60
                                                                                MASS 61
       DO 550 I=1,NSL,NDF
                                                                                MASS 62
       P(I) = S(I,I)*SUM1/SUMD1
                                                                                MASS 63
       P(I+2) = P(I+1) = P(I)
                                                                                MASS 64
       P(I+3) = S(I+3,I+3)*SUM2/SUMD2
                                                                                MASS 65
   550 P(I+4) = P(I+3)
                                                                                MASS 66
       ADD TO TOTAL ARRAY
```

```
MASS 67
  100 CALL ADDSTF(A,S,P,JDIAG,LD,NST,NEL*NDF,.FALSE.)
                                                                                      MASS 68
  110 CONTINUE
                                                                                      MASS 69
       REWIND 2
                                                                                      MASS 70
       IF(ISW.EQ.2) WRITE(2) (A(I), I=1, NKM)
                                                                                      MASS 71
       IF(ISW.EQ.3) WRITE(2) (A(I), I=1, NEQ)
                                                                                      MASS 72
       RETURN
                                                                                      MASS 73
       END
C
                                                                                      RODI
       SUBROUTINE RODIPCT
                                                                                      RODI
                                                                                             2
C***
                                                                                      RODI
                                                                                              3
       LOGICAL FLAG
                                                                                             4
                                                                                      RODI
       COMMON G(1)
                                                                                      RODI
                                                                                             5
       DIMENSION M(1)
                                                                                      RODI
                                                                                             6
       EQUIVALENCE (G(1),M(1))
       COMMON /CTDATA/ 0, HEAD(20), NUMMP, NUMEL, LAYER, NEG, IPR
                                                                                      RODI
       COMMON /LODATA/ NDF, NDM, NEN, NST, NKM
COMMON /PARATS/ NPAR(14), NEND
COMMON /RODATA/ UR, IG, NDS
                                                                                      RODI
                                                                                             8
                                                                                      RODI
                                                                                              9
                                                                                      RODI 10
                                                                                      RODI 11
       COMMON /ROELEM/ NER, NEOR, ER
                                                                                      RODI
       DATA FLAG/.FALSE./, NER/20/, ER/30000000./
                                                                                      RODI
                                                                                            13
       IF(FLAG) GO TO 50
                                                                                      RODI 14
       NEOR=2*(NER+1)
                                                                                      RODI 15
       NKMR=7#NER+3
                                                                                      RODI 16
       N1=NEND
                                                                                      RODI 17
       N2=N1+NEO*IPR
                                                                                       RODI 18
       N3=N2+NEQ*IFR
                                                                                       RODI 19
       N4=N3+NEQ#IPR
                                                                                       RODI 20
       N5=N4+NKMR#IPR
                                                                                       RODI 21
       NG=N5+NEQR*IPR
                                                                                       RODI 22
       N7=N6+NEOR
                                                                                       RODI 23
       N8=N7+NEQR*IPR
                                                                                       RODI 24
       N9=N8+NEQR*IPR
                                                                                       RODI 25
       N10=N9+NEQR*IPR
                                                                                       RODI 26
       N11=N10+NEQR*IPR
                                                                                       RODI 27
       NE=N11+NEQR*IPR
                                                                                       RODI 28
       CALL SETMEM(NE)
                                                                                       RODI 29
       CALL PZERO(G(NEND), NE-NEND)
                                                                                       RODI 30
       FLAG=.TRUE.
       CALL WIMPCT(G(NPAR(1)),G(NPAR(2)),M(NPAR(3)),G(NPAR(4)),
                                                                                       RODI 31
                     M(NPAR(5)), M(NPAR(6)), G(NPAR(7)), G(NPAR(8)),
                                                                                       RODI 32
                                                                                       RODI 33
RODI 34
                     M(NPAR(9)),G(NPAR(10)),G(NPAR(11)),G(N1),G(N2),
      2
                      G(N3), G(N4), G(N5), M(N6), G(N7), G(N8), G(N9), G(N10),
      3
                                                                                       RODI 35
                      G(N11))
      4
                                                                                       RODI 36
RODI 37
       RETURN
       END
C
       SUBROUTINE WIMPCT(UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, U, B, V, A, RK, RM,
                                                                                       WIMP
                                                                                       WIMP
                                                                                              2
                             JDR, RU, RV, RA, RB, FR)
                                                                                       WIMP
                                                                                              3
           SOLVE IMPACT PROBLEM
\Gamma****
                                                                                       WIMP
        LOGICAL FLAG, TAN
                                                                                       WIMP
                                                                                              5
        COMMON G(1)
                                                                                       WIMP
                                                                                              6
        DIMENSION M(1)
                                                                                       WIMP
        EQUIVALENCE (G(1),M(1))
       COMMON /CTDATA/ O,HEAD(20),NUMNP,NUMEL,LAYER,NEG,IPR
COMMON /TMDATA/ TIME,DT,DDT,FORCE,ALPHA
COMMON /LODATA/ NDF,NDM,NEN,NST,NKM
COMMON /NITERS/ ITR
                                                                                       WIMP
                                                                                              8
                                                                                              9
                                                                                       WIMP
                                                                                       WIMP 10
                                                                                       WIMP 11
                                                                                       WIMP
        COMMON /PARATS/ NPAR(14), NEND
COMMON /RODATA/ UR, IQ, NDS
                                                                                       WIMP 13
                                                                                       WIMP 14
        COMMON /ROELEM/ NER, NEOR, ER
                                                                                       WIMP 15
        COMMON /CONSTS/ A0, A2, A4, A5, A6, A7, A8, AREA COMMON /PROLOD/ PROP
                                                                                       WIMP 16
                                                                                       WIMP 17
        COMMON /ISWIDX/ ISW
                                                                                       WIMP 18
        COMMON /EXTRAS/ TAN
        DIMENSION UL(1), XL(1), LD(1), P(1), IX(1), ID(1), X(1), F(1), JDIAG(1),
                                                                                       WIMP 19
                                                                                       WIMP 20
                    DR(1),U(1),B(1),U(1),A(1),RK(1),RM(1),JDR(1),RU(1),
                                                                                       WIMP 21
                    RU(1),RA(1),RB(1),FR(1),Q(3),QP(3)
                                                                                       MIMP 22
        DATA ITR/5/,FLAG/.FALSE./,WIL/1.4/,INTE/24/
                                                                                        WIMP 23
        IF(FLAG) GO TO 50
                                                                                       WIMP 24
        DO 1 I=1,3
```

```
Q(I)=0.0
                                                                            WIMP 25
                                                                            WIMP 26
     QP(I)=0.0
                                                                            WIMP 27
   1 CONTINUE
                                                                            WIMP 28
     IDS=1
                                                                            WIMP 29
     TAN=.FALSE.
                                                                            WIMP 30
     REMIND 5
                                                                            WIMP 31
     READ(2) (B(I), I=1, NEQ)
                                                                            WIMP 32
     FORCE=0.0
                                                                            WIMP 33
     ALPHA=0.0
                                                                            WIMP 34
     PROP=0.0
                                                                            WIMP 35
     NNEQ=NDF*NUMNP
                                                                            WIMP 36
     A0=6./(WIL*DT)**2
                                                                            WIMP 37
     A2=6./(WIL*DT)
                                                                            WIMP 38
     A4=A0/WIL
                                                                            WIMP 39
     A5=-A2/WIL
                                                                            WIMP 40
     A6=1.-3./WIL
     A7=DT/2.
                                                                            WIMP 41
                                                                            WIMP 42
     A8=DDT/6
                                                                            WIMP 43
     CALL FORMROD(RK, RM, JDR)
     DO 10 I=1, NEQR
                                                                            WIMP 44
                                                                            WIMP 45
  10 RU(I)=-UR
     Q(2)=-VR
                                                                            WIMP 46
                                                                            WIMP 47
     FLAG=.TRUE.
 50 ISW=5
                                                                             WIMP 48
                                                                            WIMP 49
     IF(IDS.EQ.NDS) TAN=.TRUE.
                                                                            WIMP 50
     CALL FSTREA(UL, XL, LD, P, IX, ID, X, F, JDIAG, DR, U, NDF, NDM, NEN, NST, NNEQ)
     DO 20 I=1,NEQ
                                                                            WIMP 51
                                                                            WIMP 52
     A(I)=DR(I)/B(I)
     U(I)=U(I)+DT*A(I)
                                                                            WIMP 53
                                                                            WIMP 54
     U(I)=U(I)+DT*V(I)
                                                                            WIMP 55
 20 CONTINUE
                                                                            WIMP 56
     QP(1)=U(IQ)
                                                                            WIMP 57
     QP(2)=V(IQ)
                                                                            WIMP 58
     QP(3)=A(IQ)
                                                                            WIMP 59
     DO 30 I=1, NEQR
                                                                            WIMP 60
     RB(I)=RM(I)*(AO*RU(I)+A2*RU(I)+2.*RA(I))
                                                                            WIMP 61
  30 CONTINUE
                                                                            WIMP 62
     RBIQ=RU(1)+DT*RV(1)+DDT/3.*RA(1)
                                                                             WIMP 63
     ROT=0.000001
                                                                            WIMP 64
     ICOV=0
                                                                            WIMP 65
     DO 100 IT=1, ITR
     RUT=RBIQ+Q(3)*DDT/6.
                                                                            WIMP 66
                                                                            WIMP 67
     AF=-RUT-QP(1)
                                                                             WIMP 68
     CALL RODLOAD(FIQ, AF)
                                                                            WIMP 69
     DO 110 I=1, NEOR
                                                                            WIMP 70
     FR(I)=RB(I)
                                                                            WIMP 71
 110 CONTINUE
                                                                            WIMP 72
     FR(1)=FR(1)+(1.-WIL)*FORCE+WIL*FIQ
                                                                            WIMP 73
     CALL ACTCOL(RK, FR, JDR, NEQR, .FALSE., .TRUE., 0)
                                                                            WIMP 74
     Q(3)=A4*(FR(1)-RU(1))+A5*RU(1)+A6*RA(1)
                                                                            WIMP 75
     RUTT=RBIQ+Q(3)*DDT/6.
                                                                            WIMP 76
     ROTR=ABS((RUTT-RUT)/RUTT)
                                                                            WIMP 77
     IF(ROTR.LT.ROT) ICOV=1
                                                                            WIMP 78
     IF(ICOV.GT.0) GD TO 200
                                                                            WIMP 79
 100 CONTINUE
                                                                             WIMP 80
 200 DO 210 I=1, NEQR
                                                                            WIMP 81
     FR(I)=A4%(FR(I)-RU(I))+A5*RU(I)+A6*RA(I)
                                                                             WIMP 82
     RU(I)=RU(I)+DT*RU(I)+A8*(FR(I)+2.*RA(I))
                                                                             WIMP 83
     RU(I)=RU(I)+A7*(FR(I)+RA(I))
                                                                            WIMP 84
     RA(I)=FR(I)
                                                                            WIMP 85
 210 CONTINUE
                                                                            WIMP 86
     O(1)=RU(1)
                                                                             WIMP 87
     0(2) = RU(1)
                                                                            WIMP 88
     0(3) = RA(1)
                                                                            WIMP 89
     FORCE=FIO
                                                                            WIMP 90
     PROP=FORCE
                                                                            WIMP 91
     ALPHA=-Q(1)-QP(1)
                                                                            WIMP 92
     RODFR=RU(INTE)*AREA*ER
     WRITE(8,8001) FORCE, ALPHA, RODFR, (Q(I), I=1,3)
                                                                            WIMP 93
                                                                            WIMP 94
8001 FORMAT(6E12.4)
```

	IDS=IDS+1 IF(IDS.GT.NDS) IDS=1 TAN=.FALSE. RETURN END	WIMP 95 WIMP 96 WIMP 97 WIMP 98 WIMP 59
	SUBROUTINE FORMROD(RK.RM,JDR) FORM STIFFNESS AND MASS MATRICES OF ROD COMMON /RODATA/ UR, IG,NDS COMMON /ROLLEMY NER,NEGR:ER COMMON /CONSTS/ A0, A2, A4, A5, A6, A7, A3, AREA DIMENSION RK(1), JMR(2), JMS(2), JMS(3) DATA RHOR/.0003225/,RL/1.0/ DATA RHOR/.0003225/,RL/1.0/ DATA D/.22, 36, .43, .48, .50, .625/ EL=RL/NER PAI=4.*ATAN(1.) JDR(1)=1 JDR(2)=3 DD 100 I=1,NER IF(I.LT.6) A=PAI*(D(I)/2.)**2 IF(I.GE.6) A=PAI*(D(6)/2.)**2 IF(I.GE.6) A=PAI*(D(6)/2.)**2 IT(1.GE.6) A=PAI*(D(6)/2.)**2 JJ=2*(I+1)-1 JJ=2*(I+1)-1 JJMI_JI-1 JJMI_JI-1 JJMR_JI-2 JJR(JI)=JDR(JJMI)+3 JDR(J)=JDR(JJM1)+4 KI=JDR(JJM2) KK(1)=RK(K2)+TI*35. RK(K2)=RK(K2)+TI*35. RK(K2+1)=RK(K2+1)+TI*4.*EL*2 RK(K2+1)=RK(K2+3)-TI*35. RK(K2+3)=RK(K2+3)-TI*3.*EL RK(K2+4)=RK(K2+6)-TI*EL*3.*EL RK(K2+6)=RK(K2+6)-TI*EL*2 RK(K2+6)=RK(K2+6)-TI*EL*2 RK(K2+7)=RK(K2+7)-TI*3.*EL RK(K2+8)=RK(K2+8)+TI*4.*EL*2 TT=RHOR*A*EL LI=2*I-1 RM(L1)=RM(L1+1)+TI*EL*2/420. RM(L1+2)=RM(L1+1)+TI*EL*2/420. RM(L1+2)=RM(L1+1)+TI*EL*2/420. RM(L1+2)=RM(L1+1)+TI*EL*2/420. RM(L1+2)=RM(L1+1)+TI*EL*2/420. RM(L1+2)=RM(L1+1)+TI*EL*2/420. RM(L1+3)=RM(L1+3)+TI*EL*2/420. CONTINUE AREA=A DD 20 I=1,NEGR J=JDR(I) RETURN END	1234567890112345678901233456789012334567890123345678901233456789012334567890123345678901233456789012334567890123345678901233456789000000000000000000000000000000000000
C C****	SUBROUTINE RODLOAD(F, AF) COMPUTE CONTACT LOADING LOGICAL RELD, UNLD, PIL COMMON /TMDATA/ TIME, DT, DDT, FORCE, ALPHA COMMON /EXDATA/ Q(4) DATA UNLD/.FALSE./, PIL/.FALSE./, RELD/.FALSE./ IF(PIL) GO TO 10 AMAX=AMIN=FMAX=0.0 PIL=.TRUE. IF(RELD) GO TO 50 IF(UNLD) GO TO 20 F=Q(1)*AF**1.5 IF(F.CE.FORCE) RETURN	RODL 1 RODL 2 RODL 3 RODL 5 RODL 5 RODL 6 RODL 7 RODL 8 RODL 10 RODL 11 RODL 11 RODL 13 RODL 13 RODL 14
	UNLD=.TRUE. AMAX=ALPHA	RODL 15

	FMAX=FORCE IF(AMAX.GT.Q(2)) UK=FMAX/((1Q(3))*AMAX+Q(2)*Q(3))**Q(4) IF(AMAX.LE.Q(2)) UK=FMAX/AMAX**Q(4) AMIN=Q(3)*(AMAX-Q(2))	RODL 16 RODL 17 RODL 18 RODL 19	7 B 9
20	IF(AMIN.LT.O.) AMIN=0.0 IF(AF.LE.AMIN) GO TO 30	RODL 20 RODL 21 RODL 23	1
	F=UK*(AF-AMIN)**0(4) IF(F.LT.FORCE) RETURN RELD=.TRUE.	RODL 23	3
	RK=FMAX/(AMAX-AMIN)**1.5	RODL 25	-
50	IF(AF.LE.AMIN) GO TO 30 F=RK*(AF-AMIN)**1.5 RETURN	RODL 27 RODL 28	7
30	F=0.0 RETURN END	RODL 29 RODL 30 RODL 31	Ō

NSG 3185

WAVE PROPAGATION IN GRAPHITE/EPOXY LAMINATES DUE TO IMPACT

NASA CR-168057

Advanced Research Projects Agency Washington DC 20525
Attn: Library

Advanced Technology Center, Inc. LTV Aerospace Corporation P.O. Box 6144 Dallas, TX 75222 Attn: D. H. Petersen W. J. Renton

Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, OH 45433

Attn: E. E. Baily

G. P. Sendéckyj (FBC)

R. S. Sandhu

Air Force Materials Laboratory Wright-Patterson Air Force Base, OH 45433

Attn: H. S. Schwartz (LN)

T. J. Reinhart (MBC)

G. P. Peterson (LC)

E. J. Morrisey (LAE)

S. W. Tsai (MBM)

N. J. Pagano

J. M. Whitney (MBM)

Air Force Office of Scientific Research Washington DC 20333 Attn: J. F. Masi (SREP)

Air Force Office of Scientific Research 1400 Wilson Blvd. Arlington, VA 22209

AFOSR/NA
Bolling AFB, DC 20332
Attn: A. K. Amos

Air Force Rocket Propulsion Laboratory Edwards, CA 93523 Attn: Library Babcock & Wilcox Company Advanced Composites Department P.O. Box 419 Alliance, Ohio 44601 Attn: P. M. Leopold

Bell Helicopter Company P.O. Box 482 Ft. Worth, TX 76101 Attn: H. Zinberg

The Boeing Company
P. O. Box 3999
Seattle, WA 98124
Attn: J. T. Hoggatt, MS. 88-33
T. R. Porter

The Boeing Company Vertol Division Morton, PA 19070 Attn: E. C. Durchlaub

Battelle Memorial Institute Columbus Laboratories 505 King Avenue Columbus, OH 43201 Attn: L. E. Hulbert

Bendix Advanced Technology Center 9140 Old Annapolis Rd/Md. 108 Columbia, MD 21045 Attn: O. Hayden Griffin

Brunswick Corporation
Defense Products Division
P. O. Box 4594
43000 Industrial Avenue
Lincoln, NE 68504
Attn: R. Morse

Celanese Research Company 86 Morris Ave. Summit, NJ 07901 Attn: H. S. Kliger

Commander Natick Laboratories U. S. Army Natick, MA 01762 Attn: Library Commander
Naval Air Systems Command
U. S. Navy Department
Washington DC 20360
Attn: M. Stander, AIR-43032D

Commander
Naval Ordnance Systems Command
U.S. Navy Department
Washington DC 20360
Attn: B. Drimmer, ORD-033
M. Kinna, ORD-033A

Cornell University
Dept. Theoretical & Applied Mech.
Thurston Hall
Ithaca, NY 14853
Attn: S. L. Phoenix

Defense Metals Information Center Battelle Memorial Institute Columbus Laboratories 505 King Avenue Columbus, OH 43201

Department of the Army
U.S. Army Aviation Materials Laboratory
Ft. Eustis, VA 23604
Attn: I. E. Figge, Sr.
Library

Department of the Army U.S. Army Aviation Systems Command P.O. Box 209 St. Louis, MO 63166 Attn: R. Vollmer, AMSAV-A-UE

Department of the Army Plastics Technical Evaluation Center Picatinny Arsenal Dover, NJ 07801 Attn: H. E. Pebly, Jr.

Department of the Army Watervliet Arsenal Watervliet, NY 12189 Attn: G. D'Andrea Department of the Army Watertown Arsenal Watertown, MA 02172 Attn: A. Thomas

Department of the Army Redstone Arsenal Huntsville, AL 35809 Attn: R. J. Thompson, AMSMI-RSS

Department of the Navy Naval Ordnance Laboratory White Oak Silver Spring, MD 20910 Attn: R. Simon

Department of the Navy U.S. Naval Ship R&D Laboratory Annapolis, MD 21402 Attn: C. Hersner, Code 2724

Director Deep Submergence Systems Project 6900 Wisconsin Avenue Washington DC 20015 Attn: H. Bernstein, DSSP-221

Director Naval Research Laboratory Washington DC 20390 Attn: Code 8430

1. Wolock, Code 8433

Drexel University 32nd and Chestnut Streets Philadelphia, PA 19104 Attn: P. C. Chou

E. I. DuPont DeNemours & Co. DuPont Experimental Station Wilmington, DE 19898 Attn: D. L. G. Sturgeon

Fiber Science, Inc. 245 East 157 Street Gardena, CA 90248 Attn: E. Dunahoo

General Dynamics P.O. Box 748 Ft. Worth, TX 76100 Attn: D. J. Wilkins Library

General Dynamics/Convair P.O. Box 1128 San Diego, CA 92112 Attn: J. L. Christian R. Adsit General Electric Co.

Evendale, OH 45215
Attn: C. Stotler
R. Ravenhall

K. Naveillati

General Motors Corporation Detroit Diesel-Allison Division Indianapolis, IN 46244 Attn: M. Herman

Georgia Institute of Technology School of Aerospace Engineering Atlanta, GA 30332 Attn: L. W. Rehfield

Grumman Aerospace Corporation Bethpage, Long Island, NY 11714 Attn: S. Dastin J. B. Whiteside

Hamilton Standard Division United Aircraft Corporation Windsor Locks, CT 06096 Attn: W. A. Percival

Hercules, Inc.
Allegheny Ballistics Laboratory
P. O. Box 210
Cumberland, MD 21053
Attn: A. A. Vicario

Hughes Aircraft Company Culver City, CA 90230 Attn: A. Knoell

Illinois Institute of Technology 10 West 32 Street Chicago, IL 60616 Attn: L. J. Broutman

I. M. Daniel

Dr. Joseph Wolf, Engineering Mechanics Dept. General Motors Research Labs. 256 Research Drive Warren, MI 48090

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 Attn: Library Lawrence Livermore Laboratory P.O. Box 808, L-421 Livermore, CA 94550 Attn: T. T. Chiao E. M. Wu

Lehigh University
Institute of Fracture &
Solid Mechanics
Bethlehem, PA 18015
Attn: G. C. Sih

Lockheed-Georgia Co.
Advanced Composites Information Center
Dept. 72-14, Zone 402
Marietta, GA 30060
Attn: T. M. Hsu

Lockheed Missiles and Space Co. P.O. Box 504 Sunnyvale, CA 94087 Attn: R. W. Fenn

Lockheed-California
Burbank, CA 91503
Attn: J. T. Ryder
K. N. Lauraitis
J. C. Ekvall

McDonnell Douglas Aircraft Corporation P.O. Box 516 Lambert Field, MS 63166

Lambert Field, MS 6316 Attn: J. C. Watson

McDonnell Douglas Aircraft Corporation 3855 Lakewood Blvd. Long Beach, CA 90810 Attn: L. B. Greszczuk

Material Sciences Corporation 1777 Walton Road Blue Bell, PA 19422 Attn: B. W. Rosen

Massachusetts Institute of Technology Cambridge, MA 02139 Attn: F. J. McGarry J. F. Mandell J. W. Mar

NASA-Ames Research Center Moffett Field, CA 94035 Attn: Dr. J. Parker Library NASA-Flight Research Center P.O. Box 273 Edwards, CA 93523 Attn: Library

NASA-George C. Marshall Space Flight Center Huntsville, AL 35812 Attn: C. E. Cataldo, S&E-ASTN-MX Library

NASA-Goddard Space Flight Center Greenbelt, MD 20771 Attn: Library

NASA-Langley Research Center Hampton, VA 23365 Attn: J. H. Starnes

J. G. Davis, Jr. M. C. Card

J. R. Davidson NASA-Lewis Research Center

21000 Brookpark Road, Cleveland, OH 44135

Attn: Contracting Officer, MS 501-11 Tech. Report Control, MS 5-5 Tech. Utilization, MS 3-16 AFSC Liaison, MS 501-3 S&MTD Contract Files, MS 49-6

L. Berke, MS 49-6

N. T. Saunders, MS 49-1

R. F. Lark, MS 49-6

J. A. Ziemianski, MS 49-6

R. H. Johns, MS 49-6

C. C. Chamis, MS 49-6 (4 copies)

R. L. Thompson, MS 49-6 T. T. Serafini, MS 49-1

Library, MS 60-3 (2 copies) NASA-Lyndon B. Johnson Space Center

Houston, TX 77001

Attn: S. Glorioso, SMD-ES52 Library

NASA Scientific and Tech. Information Facility P.O. Box 8757 Balt/Wash: International Airport, MD Acquisitions Branch (10 copies) Attn:

National Aeronautics & SpaceAdministration Office of Advanced Research & Technology Washington DC 20546

Attn:

L. Harris, Code M. Greenfield, Code RTM-6 Code RTM-6 C. Bersch.

٠.,

National Aeronauties & Space Administration Office of Technology Utilization Washington DC 20546

National Bureau of Standards Eng. Mech. Section Washington DC 20234 Attn: R. Mitchell

National Science Foundation Engineering Division 1800 G. Street, NW Washington DC 20540 Attn: Library

Northrop Corporation Aircraft Group 3901 West Broadway Hawthorne, CA 90250 Attn: R. M. Verette G. C. Grimes

Pratt & Whitney Aircraft East Hartford, CT 06108 Attn: J. M. Woodward

Raytheon Co., Missile System Division Mechanical Systems Laboratory Bedford, MA Attn: P. R. Digiovanni

Rensselaer Polytechnic Institute Troy, NY 12181 Attn: R. Loewy

Rockwell International Los Angeles Division International Airport Los Angles, CA 90009 Attn: L. M. Lackman D. Y. Konishi

Sikorsky Aircraft Division United Aircraft Corporation Stratford, CT 06602 Attn: Library

Southern Methodist University Dallas, TX 75275 Attn: R. M. Jones

Space & Missile Systems Organization Air Force Unit Post Office Los Angeles, CA 90045 Attn: Technical Data Center Structural Composites Industries, Inc. 6344 N. Irwindale Avenue Azusa, CA 91702 Attn: R. Gordon

Texas A&M
Mechanics & Materials Research Center
College Station, TX 77843
Attn: R. A. Schapery

Y. Weitsman

TRW, Inc. 23555 Euclid Avenue Cleveland, OH 44117 Attn: I. J. Toth

Union Carbide Corporation P. O. Box 6116 Cleveland, OH 44101 Attn: J. C. Bowman

United Technologies Research Center
East Hartford, CT 06108
Attn: R. C. Novak
Dr. A. Dennis
University of Dayton Research Institute
Dayton, OH 45409

Attn: R. W. Kim

University of Delaware
Mechanical & Aerospace Engineering

Newark, DE 19711 Attn: B. R. Pipes

University of Illinois
Department of Theoretical & Applied Mechanics
Urbana, IL 61801
Attn: S. S. Wang

University of Oklahoma School of Aerospace Mechanical & Nuclear Engineering Norman, OK 73069 Attn: C. W. Bert

University of Wyoming College of Engineering University Station Box 3295 Laramie, WY 82071 Attn: D. F. Adams

U. S. Army Materials & Mechanics Research Center Watertown Arsenal Watertown, MA 02172
Attn: E. M. Lenoe
D. W. Oplinger

V.P. I. and S. U.
Dept. of Eng. Mech.
Blacksburg, VA 24061
Attn: R. H. Heller
H. J. Brinson
C. T. Herakovich
K. L. Reifsnider